When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Impulse (physics) - Wikipedia

    en.wikipedia.org/wiki/Impulse_(physics)

    This type of impulse is often idealized so that the change in momentum produced by the force happens with no change in time. This sort of change is a step change , and is not physically possible. However, this is a useful model for computing the effects of ideal collisions (such as in videogame physics engines ).

  3. Specific impulse - Wikipedia

    en.wikipedia.org/wiki/Specific_impulse

    Specific impulse (usually abbreviated I sp) is a measure of how efficiently a reaction mass engine, such as a rocket using propellant or a jet engine using fuel, generates thrust. In general, this is a ratio of the impulse, i.e. change in momentum, per mass of propellant. This is equivalent to "thrust per massflow".

  4. Momentum - Wikipedia

    en.wikipedia.org/wiki/Momentum

    In continuous systems such as electromagnetic fields, fluid dynamics and deformable bodies, a momentum density can be defined as momentum per volume (a volume-specific quantity). A continuum version of the conservation of momentum leads to equations such as the Navier–Stokes equations for fluids or the Cauchy momentum equation for deformable ...

  5. Electromagnetic stress–energy tensor - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_stress...

    This equation is equivalent to the following 3D conservation laws + + = + + = + = respectively describing the electromagnetic energy density = (+) and electromagnetic momentum density =, where is the electric current density, the electric charge density, and is the Lorentz force density.

  6. Stress–energy tensor - Wikipedia

    en.wikipedia.org/wiki/Stress–energy_tensor

    The stress–energy tensor, sometimes called the stress–energy–momentum tensor or the energy–momentum tensor, is a tensor physical quantity that describes the density and flux of energy and momentum in spacetime, generalizing the stress tensor of Newtonian physics. It is an attribute of matter, radiation, and non-gravitational force fields.

  7. Euler equations (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Euler_equations_(fluid...

    The compressible Euler equations consist of equations for conservation of mass, balance of momentum, and balance of energy, together with a suitable constitutive equation for the specific energy density of the fluid. Historically, only the equations of conservation of mass and balance of momentum were derived by Euler.

  8. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    The Euler momentum equation is an expression of Newton's second law adapted to fluid dynamics. [62] [63] A fluid is described by a velocity field, i.e., a function (,) that assigns a velocity vector to each point in space and time. A small object being carried along by the fluid flow can change velocity for two reasons: first, because the ...

  9. Energy–momentum relation - Wikipedia

    en.wikipedia.org/wiki/Energy–momentum_relation

    Since m 0 does not change from frame to frame, the energy–momentum relation is used in relativistic mechanics and particle physics calculations, as energy and momentum are given in a particle's rest frame (that is, E ′ and p ′ as an observer moving with the particle would conclude to be) and measured in the lab frame (i.e. E and p as ...