Search results
Results From The WOW.Com Content Network
Independence is a fundamental notion in probability theory, as in statistics and the theory of stochastic processes.Two events are independent, statistically independent, or stochastically independent [1] if, informally speaking, the occurrence of one does not affect the probability of occurrence of the other or, equivalently, does not affect the odds.
A random sample can be thought of as a set of objects that are chosen randomly. More formally, it is "a sequence of independent, identically distributed (IID) random data points." In other words, the terms random sample and IID are synonymous. In statistics, "random sample" is the typical terminology, but in probability, it is more common to ...
Here the independent variable is the dose and the dependent variable is the frequency/intensity of symptoms. Effect of temperature on pigmentation: In measuring the amount of color removed from beetroot samples at different temperatures, temperature is the independent variable and amount of pigment removed is the dependent variable.
Pairwise independence does not imply mutual independence, as shown by the following example attributed to S. Bernstein. [3]Suppose X and Y are two independent tosses of a fair coin, where we designate 1 for heads and 0 for tails.
For example, systematic random sampling produces a sample for which each individual unit has the same probability of inclusion, but different sets of units have different probabilities of being selected. Samples that are epsem are self weighting, meaning that the inverse of selection probability for each sample is equal.
For example, in an opinion poll, possible sampling frames include an electoral register and a telephone directory. A probability sample is a sample in which every unit in the population has a chance (greater than zero) of being selected in the sample, and this probability can be accurately determined. The combination of these traits makes it ...
In probability theory, conditional independence describes situations wherein an observation is irrelevant or redundant when evaluating the certainty of a hypothesis. . Conditional independence is usually formulated in terms of conditional probability, as a special case where the probability of the hypothesis given the uninformative observation is equal to the probability
The purely mathematical analysis of random variables is independent of such interpretational difficulties, and can be based upon a rigorous axiomatic setup. In the formal mathematical language of measure theory , a random variable is defined as a measurable function from a probability measure space (called the sample space ) to a measurable space .