Search results
Results From The WOW.Com Content Network
In this situation, the event A can be analyzed by a conditional probability with respect to B. If the event of interest is A and the event B is known or assumed to have occurred, "the conditional probability of A given B", or "the probability of A under the condition B", is usually written as P(A|B) [2] or occasionally P B (A).
Where double counting involves counting one set in two ways, bijective proofs involve counting two sets in one way, by showing that their elements correspond one-for-one. The inclusion–exclusion principle , a formula for the size of a union of sets that may, together with another formula for the same union, be used as part of a double ...
Given two jointly distributed random variables and , the conditional probability distribution of given is the probability distribution of when is known to be a particular value; in some cases the conditional probabilities may be expressed as functions containing the unspecified value of as a parameter.
Executing a set of statements only if some condition is met (choice - i.e., conditional branch) Executing a set of statements zero or more times, until some condition is met (i.e., loop - the same as conditional branch) Executing a set of distant statements, after which the flow of control usually returns (subroutines, coroutines, and ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
An archetypal double counting proof is for the well known formula for the number () of k-combinations (i.e., subsets of size k) of an n-element set: = (+) ().Here a direct bijective proof is not possible: because the right-hand side of the identity is a fraction, there is no set obviously counted by it (it even takes some thought to see that the denominator always evenly divides the numerator).
Number blocks, which can be used for counting. Counting is the process of determining the number of elements of a finite set of objects; that is, determining the size of a set. . The traditional way of counting consists of continually increasing a (mental or spoken) counter by a unit for every element of the set, in some order, while marking (or displacing) those elements to avoid visiting the ...
Of the elementary combinatorial proofs, there are two which apply types of double counting.One by Gotthold Eisenstein counts lattice points.Another applies Zolotarev's lemma to (/), expressed by the Chinese remainder theorem as (/) (/) and calculates the signature of a permutation.