When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Impulse (physics) - Wikipedia

    en.wikipedia.org/wiki/Impulse_(physics)

    t 1 and t 2 are times when the impulse begins and ends, respectively, m is the mass of the object, v 2 is the final velocity of the object at the end of the time interval, and; v 1 is the initial velocity of the object when the time interval begins. Impulse has the same units and dimensions (MLT −1) as momentum.

  3. Fourth, fifth, and sixth derivatives of position - Wikipedia

    en.wikipedia.org/wiki/Fourth,_fifth,_and_sixth...

    Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.

  4. Momentum - Wikipedia

    en.wikipedia.org/wiki/Momentum

    In Newtonian mechanics, momentum (pl.: momenta or momentums; more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. . It is a vector quantity, possessing a magnitude and a directi

  5. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  6. List of equations in classical mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    Left: intrinsic "spin" angular momentum S is really orbital angular momentum of the object at every point, right: extrinsic orbital angular momentum L about an axis, top: the moment of inertia tensor I and angular velocity ω (L is not always parallel to ω) [6] bottom: momentum p and its radial position r from the axis.

  7. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    The Euler momentum equation is an expression of Newton's second law adapted to fluid dynamics. [62] [63] A fluid is described by a velocity field, i.e., a function (,) that assigns a velocity vector to each point in space and time. A small object being carried along by the fluid flow can change velocity for two reasons: first, because the ...

  8. Momentum theory - Wikipedia

    en.wikipedia.org/wiki/Momentum_Theory

    An actuator disk accelerating a fluid flow from right to left. In fluid dynamics, momentum theory or disk actuator theory is a theory describing a mathematical model of an ideal actuator disk, such as a propeller or helicopter rotor, by W.J.M. Rankine (1865), [1] Alfred George Greenhill (1888) and Robert Edmund Froude (1889).

  9. Hamiltonian mechanics - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_mechanics

    Hamilton's equations give the time evolution of coordinates and conjugate momenta in four first-order differential equations, ˙ = ˙ = ⁡ ˙ = ⁡ ⁡ ⁡ ˙ = Momentum ⁠ ⁠, which corresponds to the vertical component of angular momentum ⁠ = ⁡ ⁡ ˙ ⁠, is a constant of motion. That is a consequence of the rotational symmetry of the ...