Ad
related to: ambient air temp sensor function diagram
Search results
Results From The WOW.Com Content Network
The measurement of temperature is simple compared to the dew point. Operating under the principle that electrical resistance varies with temperature, a platinum wire resistive temperature device measures the ambient air temperature. The current ASOS thermometer is designated the HO-1088, though some older systems still utilize the HO-83.
The dry-bulb temperature (DBT) is the temperature of air measured by a thermometer freely exposed to the air, but shielded from radiation. [1] The dry-bulb temperature is the temperature that is usually thought of as air temperature, and it is the true thermodynamic temperature. It is directly proportional to the mean kinetic energy of the air ...
The resistance of the titania is a function of the oxygen partial pressure and the temperature. Therefore, some sensors are used with a gas-temperature sensor to compensate for the resistance change due to temperature. The resistance value at any temperature is about 1/1000 the change in oxygen concentration.
The current and voltage across the thermistor depend on the particular circuit configuration. As a simple example, if the voltage across the thermistor is held fixed, then by Ohm's law we have = /, and the equilibrium equation can be solved for the ambient temperature as a function of the measured resistance of the thermistor:
MAP sensor data can be converted to air mass data by using a second variable coming from an IAT Sensor (intake air temperature sensor). This is called the speed-density method. Engine speed (RPM) is also used to determine where on a look up table to determine fuelling, hence speed-density (engine speed / air density).
A mass (air) flow sensor (MAF) is a sensor used to determine the mass flow rate of air entering a fuel-injected internal combustion engine. The air mass information is necessary for the engine control unit (ECU) to balance and deliver the correct fuel mass to the engine. Air changes its density with temperature and pressure.
A thermostat exerts control by switching heating or cooling devices on or off, or by regulating the flow of a heat transfer fluid as needed, to maintain the correct temperature. A thermostat can often be the main control unit for a heating or cooling system, in applications ranging from ambient air control to automotive coolant control.
Temperatures are recorded along the optical sensor cable, thus not at points, but as a continuous profile. A high accuracy of temperature determination is achieved over great distances. Typically the DTS systems can locate the temperature to a spatial resolution of 1 m with accuracy to within ±1 °C at a resolution of 0.01 °C.