When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Sigmoid function - Wikipedia

    en.wikipedia.org/wiki/Sigmoid_function

    A sigmoid function is any mathematical function whose graph has a characteristic S-shaped or sigmoid curve. A common example of a sigmoid function is the logistic function , which is defined by the formula: [ 1 ]

  3. Vanishing gradient problem - Wikipedia

    en.wikipedia.org/wiki/Vanishing_gradient_problem

    For a concrete example, consider a typical recurrent network defined by = (,,) = + + where = (,) is the network parameter, is the sigmoid activation function [note 2], applied to each vector coordinate separately, and is the bias vector.

  4. Activation function - Wikipedia

    en.wikipedia.org/wiki/Activation_function

    Logistic activation function. The activation function of a node in an artificial neural network is a function that calculates the output of the node based on its individual inputs and their weights. Nontrivial problems can be solved using only a few nodes if the activation function is nonlinear. [1]

  5. Logistic function - Wikipedia

    en.wikipedia.org/wiki/Logistic_function

    The standard logistic function is the logistic function with parameters =, =, =, which yields = + = + = / / + /.In practice, due to the nature of the exponential function, it is often sufficient to compute the standard logistic function for over a small range of real numbers, such as a range contained in [−6, +6], as it quickly converges very close to its saturation values of 0 and 1.

  6. Mathematics of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_artificial...

    A widely used type of composition is the nonlinear weighted sum, where () = (()), where (commonly referred to as the activation function [3]) is some predefined function, such as the hyperbolic tangent, sigmoid function, softmax function, or rectifier function. The important characteristic of the activation function is that it provides a smooth ...

  7. Backpropagation - Wikipedia

    en.wikipedia.org/wiki/Backpropagation

    Traditional activation functions include sigmoid, tanh, and ReLU. Swish , [ 9 ] mish , [ 10 ] and other activation functions have since been proposed as well. The overall network is a combination of function composition and matrix multiplication :

  8. Swish function - Wikipedia

    en.wikipedia.org/wiki/Swish_function

    The swish paper was then updated to propose the activation with the learnable parameter β. In 2017, after performing analysis on ImageNet data, researchers from Google indicated that using this function as an activation function in artificial neural networks improves the performance, compared to ReLU and sigmoid functions. [ 1 ]

  9. Universal approximation theorem - Wikipedia

    en.wikipedia.org/wiki/Universal_approximation...

    Also, certain non-continuous activation functions can be used to approximate a sigmoid function, which then allows the above theorem to apply to those functions. For example, the step function works. In particular, this shows that a perceptron network with a single infinitely wide hidden layer can approximate arbitrary functions.