When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Matching (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Matching_(graph_theory)

    In the mathematical discipline of graph theory, a matching or independent edge set in an undirected graph is a set of edges without common vertices. [1] In other words, a subset of the edges is a matching if each vertex appears in at most one edge of that matching. Finding a matching in a bipartite graph can be treated as a network flow problem.

  3. Petersen's theorem - Wikipedia

    en.wikipedia.org/wiki/Petersen's_theorem

    In a cubic graph with a perfect matching, the edges that are not in the perfect matching form a 2-factor. By orienting the 2-factor, the edges of the perfect matching can be extended to paths of length three, say by taking the outward-oriented edges. This shows that every cubic, bridgeless graph decomposes into edge-disjoint paths of length ...

  4. Maximum weight matching - Wikipedia

    en.wikipedia.org/wiki/Maximum_weight_matching

    Maximum weight matching of 2 graphs. The first is also a perfect matching, while the second is far from it with 4 vertices unaccounted for, but has high value weights compared to the other edges in the graph. In computer science and graph theory, the maximum weight matching problem is the problem of finding, in a weighted graph, a matching in ...

  5. Matching polytope - Wikipedia

    en.wikipedia.org/wiki/Matching_polytope

    The fifth corner (1/2,1/2,1/2) does not represent a matching - it represents a fractional matching in which each edge is "half in, half out". Note that this is the largest fractional matching in this graph - its weight is 3/2, in contrast to the three integral matchings whose size is only 1. As another example, in the 4-cycle there are 4 edges.

  6. Maximum cardinality matching - Wikipedia

    en.wikipedia.org/wiki/Maximum_cardinality_matching

    Maximum cardinality matching is a fundamental problem in graph theory. [1] We are given a graph G, and the goal is to find a matching containing as many edges as possible; that is, a maximum cardinality subset of the edges such that each vertex is adjacent to at most one edge of the subset. As each edge will cover exactly two vertices, this ...

  7. Propensity score matching - Wikipedia

    en.wikipedia.org/wiki/Propensity_score_matching

    Radius matching: all matches within a particular radius are used -- and reused between treatment units. Kernel matching: same as radius matching, except control observations are weighted as a function of the distance between the treatment observation's propensity score and control match propensity score. One example is the Epanechnikov kernel.

  8. Proportional item allocation - Wikipedia

    en.wikipedia.org/wiki/Proportional_item_allocation

    Proportional item allocation is a fair item allocation problem, in which the fairness criterion is proportionality - each agent should receive a bundle that they value at least as much as 1/n of the entire allocation, where n is the number of agents. [1]: 296–297 Since the items are indivisible, a proportional assignment may not exist.

  9. Perfect matching - Wikipedia

    en.wikipedia.org/wiki/Perfect_matching

    In graph theory, a perfect matching in a graph is a matching that covers every vertex of the graph. More formally, given a graph G with edges E and vertices V, a perfect matching in G is a subset M of E, such that every vertex in V is adjacent to exactly one edge in M. The adjacency matrix of a perfect matching is a symmetric permutation matrix.