When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Poisson kernel - Wikipedia

    en.wikipedia.org/wiki/Poisson_kernel

    In mathematics, and specifically in potential theory, the Poisson kernel is an integral kernel, used for solving the two-dimensional Laplace equation, given Dirichlet boundary conditions on the unit disk. The kernel can be understood as the derivative of the Green's function for the Laplace equation. It is named for Siméon Poisson.

  3. Poisson's equation - Wikipedia

    en.wikipedia.org/wiki/Poisson's_equation

    Siméon Denis Poisson. Poisson's equation is an elliptic partial differential equation of broad utility in theoretical physics.For example, the solution to Poisson's equation is the potential field caused by a given electric charge or mass density distribution; with the potential field known, one can then calculate the corresponding electrostatic or gravitational (force) field.

  4. Dirichlet problem - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_problem

    The next steps in the study of the Dirichlet's problem were taken by Karl Friedrich Gauss, William Thomson (Lord Kelvin) and Peter Gustav Lejeune Dirichlet, after whom the problem was named, and the solution to the problem (at least for the ball) using the Poisson kernel was known to Dirichlet (judging by his 1850 paper submitted to the ...

  5. Green's function - Wikipedia

    en.wikipedia.org/wiki/Green's_function

    Through the superposition principle, given a linear ordinary differential equation (ODE), =, one can first solve =, for each s, and realizing that, since the source is a sum of delta functions, the solution is a sum of Green's functions as well, by linearity of L.

  6. Discrete Poisson equation - Wikipedia

    en.wikipedia.org/wiki/Discrete_Poisson_equation

    In mathematics, the discrete Poisson equation is the finite difference analog of the Poisson equation. In it, the discrete Laplace operator takes the place of the Laplace operator . The discrete Poisson equation is frequently used in numerical analysis as a stand-in for the continuous Poisson equation, although it is also studied in its own ...

  7. Trace operator - Wikipedia

    en.wikipedia.org/wiki/Trace_operator

    On a bounded, smooth domain, consider the problem of solving Poisson's equation with inhomogeneous Dirichlet boundary conditions: =, = with given functions and with regularity discussed in the application section below.

  8. Fredholm theory - Wikipedia

    en.wikipedia.org/wiki/Fredholm_theory

    in which case the equation to be solved becomes the Poisson equation. A general method of solving such equations is by means of Green's functions , namely, rather than a direct attack, one first finds the function K = K ( x , y ) {\displaystyle K=K(x,y)} such that for a given pair x,y ,

  9. Poisson summation formula - Wikipedia

    en.wikipedia.org/wiki/Poisson_summation_formula

    In mathematics, the Poisson summation formula is an equation that relates the Fourier series coefficients of the periodic summation of a function to values of the function's continuous Fourier transform. Consequently, the periodic summation of a function is completely defined by discrete samples of the original function's Fourier transform.