Ads
related to: functional redundancy in microbial systems 7th edition pdf reference example
Search results
Results From The WOW.Com Content Network
In ecology, functional equivalence (or functional redundancy) is the ecological phenomenon that multiple species representing a variety of taxonomic groups can share similar, if not identical, roles in ecosystem functionality (e.g., nitrogen fixers, algae scrapers, scavengers). [1] This phenomenon can apply to both plant and animal taxa.
Microbial cell factory is an approach to bioengineering which considers microbial cells as a production facility in which the optimization process largely depends on metabolic engineering. [1] MCFs is a derivation of cell factories, which are engineered microbes and plant cells. [ 2 ]
Examples are numerous: disproportionate numbers of spermatozoa during fertilization compared to one egg, large number of neurotransmitters released during neuronal communication compared to the number of receptors, large numbers of released calcium ions during transient in cells, and many more in molecular and cellular transduction or gene ...
In this case, the redundant part of the gene remains in the genome due to the proximity to the area that codes for the unique function. [17] The reason redundant genes remain in the genome is an ongoing question and gene redundancy is being studied by researchers everywhere. There are many hypotheses in addition to the backup and piggyback models.
Examples of degeneracy are found in the genetic code, when many different nucleotide sequences encode the same polypeptide; in protein folding, when different polypeptides fold to be structurally and functionally equivalent; in protein functions, when overlapping binding functions and similar catalytic specificities are observed; in metabolism, when multiple, parallel biosynthetic and ...
In microbial systems, these two mechanisms are equally important. For example, most microbial populations often begin from a small number of colonizers. Because most microbes reproduce asexually, close genetic relatives will surround cells as the population grows. These clonal populations often result in an extremely high density, especially in ...
Functional diversity is widely considered to be "the value and the range of those species and organismal traits that influence ecosystem functioning" [3] In this sense, the use of the term "function" may apply to individuals, populations, communities, trophic levels, or evolutionary process (i.e. considering the function of adaptations). [3]
Viruses also have notable virulence factors. Experimental research, for example, often focuses on creating environments that isolate and identify the role of "niche-specific virulence genes". These are genes that perform specific tasks within specific tissues/places at specific times; the sum total of niche-specific genes is the virus' virulence.