Search results
Results From The WOW.Com Content Network
The main approaches for stepwise regression are: Forward selection, which involves starting with no variables in the model, testing the addition of each variable using a chosen model fit criterion, adding the variable (if any) whose inclusion gives the most statistically significant improvement of the fit, and repeating this process until none improves the model to a statistically significant ...
The PRESS statistic has been extensively used in lazy learning and locally linear learning to speed-up the assessment and the selection of the neighbourhood size. [ 5 ] [ 6 ] See also
A variable rules analysis is designed to provide a quantitative model of a situation where speakers alternate between different forms that have the same meaning and stand in free variation, but in such a way that the probability of choice of either the one or the other form is conditioned by a variety of context factors or social ...
In statistics, Mallows's, [1] [2] named for Colin Lingwood Mallows, is used to assess the fit of a regression model that has been estimated using ordinary least squares.It is applied in the context of model selection, where a number of predictor variables are available for predicting some outcome, and the goal is to find the best model involving a subset of these predictors.
Filter feature selection is a specific case of a more general paradigm called structure learning.Feature selection finds the relevant feature set for a specific target variable whereas structure learning finds the relationships between all the variables, usually by expressing these relationships as a graph.
Free Academic Licensing and Free Trial version available. Windows-only. KnowledgeMiner — Commercial product. Mac OS X-only. Free Demo version available. PNN Discovery client — Commercial product. Sciengy RPF! — Freeware, Open source. wGMDH — Weka plugin, Open source. R Package – Open source. R Package for regression tasks – Open source.
In PCR, instead of regressing the dependent variable on the explanatory variables directly, the principal components of the explanatory variables are used as regressors. One typically uses only a subset of all the principal components for regression, making PCR a kind of regularized procedure and also a type of shrinkage estimator.
A hinge function is defined by a variable and a knot, so to add a new basis function, MARS must search over all combinations of the following: 1) existing terms (called parent terms in this context) 2) all variables (to select one for the new basis function) 3) all values of each variable (for the knot of the new hinge function).