Ad
related to: conditional expectation
Search results
Results From The WOW.Com Content Network
In probability theory, the conditional expectation, conditional expected value, or conditional mean of a random variable is its expected value evaluated with respect to the conditional probability distribution. If the random variable can take on only a finite number of values, the "conditions" are that the variable can only take on a subset of ...
To do this, instead of computing the conditional probability of failure, the algorithm computes the conditional expectation of Q and proceeds accordingly: at each interior node, there is some child whose conditional expectation is at most (at least) the node's conditional expectation; the algorithm moves from the current node to such a child ...
More generally, one can refer to the conditional distribution of a subset of a set of more than two variables; this conditional distribution is contingent on the values of all the remaining variables, and if more than one variable is included in the subset then this conditional distribution is the conditional joint distribution of the included ...
Conditional probabilities, conditional expectations, and conditional probability distributions are treated on three levels: discrete probabilities, probability density functions, and measure theory. Conditioning leads to a non-random result if the condition is completely specified; otherwise, if the condition is left random, the result of ...
Conditional expectation [ edit ] The conditional expectation of a log-normal random variable X {\displaystyle X} —with respect to a threshold k {\displaystyle k} —is its partial expectation divided by the cumulative probability of being in that range:
Conditional expectation; Expectation (epistemic) Expectile – related to expectations in a way analogous to that in which quantiles are related to medians; Law of total expectation – the expected value of the conditional expected value of X given Y is the same as the expected value of X; Median – indicated by in a drawing above
In probability theory, regular conditional probability is a concept that formalizes the notion of conditioning on the outcome of a random variable. The resulting conditional probability distribution is a parametrized family of probability measures called a Markov kernel .
The lemma plays an important role in the conditional expectation in probability theory, where it allows replacement of the conditioning on a random variable by conditioning on the -algebra that is generated by the random variable.