When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Factorial - Wikipedia

    en.wikipedia.org/wiki/Factorial

    Multiply together the results of the two previous steps The product of all primes up to n {\displaystyle n} is an O ( n ) {\displaystyle O(n)} -bit number, by the prime number theorem , so the time for the first step is O ( n log 2 ⁡ n ) {\displaystyle O(n\log ^{2}n)} , with one logarithm coming from the divide and conquer and another coming ...

  3. Multiplicative partitions of factorials - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_partitions...

    Multiplicative partitions of factorials are expressions of values of the factorial function as products of powers of prime numbers. They have been studied by Paul Erdős and others. [1] [2] [3] The factorial of a positive integer is a product of decreasing integer factors, which can in turn be factored into prime numbers.

  4. Computational complexity of mathematical operations - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    Graphs of functions commonly used in the analysis of algorithms, showing the number of operations versus input size for each function. The following tables list the computational complexity of various algorithms for common mathematical operations.

  5. Double factorial - Wikipedia

    en.wikipedia.org/wiki/Double_factorial

    These are counted by the double factorial 15 = (6 − 1)‼. In mathematics, the double factorial of a number n, denoted by n‼, is the product of all the positive integers up to n that have the same parity (odd or even) as n. [1] That is,

  6. Order of operations - Wikipedia

    en.wikipedia.org/wiki/Order_of_operations

    (In Python, Ruby, PARI/GP and other popular languages, A & B == C is interpreted as (A & B) == C.) Source-to-source compilers that compile to multiple languages need to explicitly deal with the issue of different order of operations across languages. Haxe for example standardizes the order and enforces it by inserting brackets where it is ...

  7. Multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Multiplication_algorithm

    First multiply the quarters by 47, the result 94 is written into the first workspace. Next, multiply cwt 12*47 = (2 + 10)*47 but don't add up the partial results (94, 470) yet. Likewise multiply 23 by 47 yielding (141, 940). The quarters column is totaled and the result placed in the second workspace (a trivial move in this case).

  8. Arbitrary-precision arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arbitrary-precision_arithmetic

    The second most important decision is in the choice of the base of arithmetic, here ten. There are many considerations. The scratchpad variable d must be able to hold the result of a single-digit multiply plus the carry from the prior digit's multiply. In base ten, a sixteen-bit integer is certainly adequate as it allows up to 32767.

  9. Multinomial theorem - Wikipedia

    en.wikipedia.org/wiki/Multinomial_theorem

    The third power of the trinomial a + b + c is given by (+ +) = + + + + + + + + +. This can be computed by hand using the distributive property of multiplication over addition and combining like terms, but it can also be done (perhaps more easily) with the multinomial theorem.