When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Curve fitting - Wikipedia

    en.wikipedia.org/wiki/Curve_fitting

    Curve fitting [1] [2] is the process of constructing a curve, or mathematical function, that has the best fit to a series of data points, [3] possibly subject to constraints. [ 4 ] [ 5 ] Curve fitting can involve either interpolation , [ 6 ] [ 7 ] where an exact fit to the data is required, or smoothing , [ 8 ] [ 9 ] in which a "smooth ...

  3. Levenberg–Marquardt algorithm - Wikipedia

    en.wikipedia.org/wiki/Levenberg–Marquardt...

    In this example we try to fit the function = ⁡ + ⁡ using the Levenberg–Marquardt algorithm implemented in GNU Octave as the leasqr function. The graphs show progressively better fitting for the parameters a = 100 {\displaystyle a=100} , b = 102 {\displaystyle b=102} used in the initial curve.

  4. Polynomial and rational function modeling - Wikipedia

    en.wikipedia.org/wiki/Polynomial_and_rational...

    For fitting rational function models, the constant term in the denominator is usually set to 1. Rational functions are typically identified by the degrees of the numerator and denominator. For example, a quadratic for the numerator and a cubic for the denominator is identified as a quadratic/cubic rational function.

  5. Sigmoid function - Wikipedia

    en.wikipedia.org/wiki/Sigmoid_function

    A sigmoid function is any mathematical function whose graph has a characteristic S-shaped or sigmoid curve. A common example of a sigmoid function is the logistic function , which is defined by the formula: [ 1 ]

  6. Surrogate model - Wikipedia

    en.wikipedia.org/wiki/Surrogate_model

    When only a single design variable is involved, the process is known as curve fitting. Though using surrogate models in lieu of experiments and simulations in engineering design is more common, surrogate modeling may be used in many other areas of science where there are expensive experiments and/or function evaluations.

  7. Non-linear least squares - Wikipedia

    en.wikipedia.org/wiki/Non-linear_least_squares

    Consider a set of data points, (,), (,), …, (,), and a curve (model function) ^ = (,), that in addition to the variable also depends on parameters, = (,, …,), with . It is desired to find the vector of parameters such that the curve fits best the given data in the least squares sense, that is, the sum of squares = = is minimized, where the residuals (in-sample prediction errors) r i are ...

  8. Generalised logistic function - Wikipedia

    en.wikipedia.org/wiki/Generalised_logistic_function

    The generalized logistic function or curve is an extension of the logistic or sigmoid functions. Originally developed for growth modelling, it allows for more flexible S-shaped curves. The function is sometimes named Richards's curve after F. J. Richards, who proposed the general form for the family of models in 1959.

  9. Weibull distribution - Wikipedia

    en.wikipedia.org/wiki/Weibull_distribution

    For k > 1, the density function tends to zero as x approaches zero from above, increases until its mode and decreases after it. The density function has infinite negative slope at x = 0 if 0 < k < 1, infinite positive slope at x = 0 if 1 < k < 2 and null slope at x = 0 if k > 2. For k = 1 the density has a finite negative slope at x = 0.