Search results
Results From The WOW.Com Content Network
An incidence in a graph is a vertex-edge pair such that the vertex is an endpoint of the edge. incidence matrix The incidence matrix of a graph is a matrix whose rows are indexed by vertices of the graph, and whose columns are indexed by edges, with a one in the cell for row i and column j when vertex i and edge j are incident, and a zero ...
A graph with 6 vertices and 7 edges where the vertex number 6 on the far-left is a leaf vertex or a pendant vertex. In discrete mathematics, and more specifically in graph theory, a vertex (plural vertices) or node is the fundamental unit of which graphs are formed: an undirected graph consists of a set of vertices and a set of edges (unordered pairs of vertices), while a directed graph ...
Directed graphs as defined in the two definitions above cannot have loops, because a loop joining a vertex to itself is the edge (for a directed simple graph) or is incident on (for a directed multigraph) (,) which is not in {(,) (,)}. So to allow loops the definitions must be expanded.
An edge-graceful labeling on a simple graph without loops or multiple edges on p vertices and q edges is a labeling of the edges by distinct integers in {1, …, q} such that the labeling on the vertices induced by labeling a vertex with the sum of the incident edges taken modulo p assigns all values from 0 to p − 1 to the vertices.
A vertex with degree 1 is called a leaf vertex or end vertex or a pendant vertex, and the edge incident with that vertex is called a pendant edge. In the graph on the right, {3,5} is a pendant edge. This terminology is common in the study of trees in graph theory and especially trees as data structures .
The degree or valency of a vertex is the number of edges that are incident to it; for graphs with loops, a loop is counted twice. In a graph of order n, the maximum degree of each vertex is n − 1 (or n + 1 if loops are allowed, because a loop contributes 2 to the degree), and the maximum number of edges is n(n − 1)/2 (or n(n + 1)/2 if loops ...
Vertex identification (sometimes called vertex contraction) removes the restriction that the contraction must occur over vertices sharing an incident edge. (Thus, edge contraction is a special case of vertex identification.) The operation may occur on any pair (or subset) of vertices in the graph.
Put otherwise, f maps edges incident to v one-to-one onto edges incident to f(v). If there exists a covering map from C to G, then C is a covering graph, or a lift, of G. An h-lift is a lift such that the covering map f has the property that for every vertex v of G, its fiber f −1 (v) has exactly h elements.