When.com Web Search

  1. Ads

    related to: what does deep learning mean

Search results

  1. Results From The WOW.Com Content Network
  2. Deep learning - Wikipedia

    en.wikipedia.org/wiki/Deep_learning

    Deep learning is a subset of machine learning that focuses on utilizing neural networks to perform tasks such as classification, regression, and representation learning. The field takes inspiration from biological neuroscience and is centered around stacking artificial neurons into layers and "training" them to process data.

  3. Multimodal learning - Wikipedia

    en.wikipedia.org/wiki/Multimodal_learning

    Multimodal learning is a type of deep learning that integrates and processes multiple types of data, referred to as modalities, such as text, audio, images, or video.This integration allows for a more holistic understanding of complex data, improving model performance in tasks like visual question answering, cross-modal retrieval, [1] text-to-image generation, [2] aesthetic ranking, [3] and ...

  4. Generative pre-trained transformer - Wikipedia

    en.wikipedia.org/wiki/Generative_pre-trained...

    Generative pretraining (GP) was a long-established concept in machine learning applications. [16] [17] It was originally used as a form of semi-supervised learning, as the model is trained first on an unlabelled dataset (pretraining step) by learning to generate datapoints in the dataset, and then it is trained to classify a labelled dataset. [18]

  5. Neural network (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Neural_network_(machine...

    Topological deep learning, first introduced in 2017, [147] is an emerging approach in machine learning that integrates topology with deep neural networks to address highly intricate and high-order data.

  6. Transformer (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Transformer_(deep_learning...

    The plain transformer architecture had difficulty converging. In the original paper [1] the authors recommended using learning rate warmup. That is, the learning rate should linearly scale up from 0 to maximal value for the first part of the training (usually recommended to be 2% of the total number of training steps), before decaying again.

  7. Deep reinforcement learning - Wikipedia

    en.wikipedia.org/wiki/Deep_reinforcement_learning

    Deep learning methods, often using supervised learning with labeled datasets, have been shown to solve tasks that involve handling complex, high-dimensional raw input data (such as images) with less manual feature engineering than prior methods, enabling significant progress in several fields including computer vision and natural language ...

  8. Which issues will be top of mind for leaders in 2025? AI, of ...

    www.aol.com/finance/issues-top-mind-leaders-2025...

    I mean, some obviously, Marc Benioff of Salesforce just really wanted to talk and do a deep dive on agentic AI, which was fascinating. [clip from interview with Marc Benioff] Today, I would say there.

  9. Fine-tuning (deep learning) - Wikipedia

    en.wikipedia.org/wiki/Fine-tuning_(deep_learning)

    In deep learning, fine-tuning is an approach to transfer learning in which the parameters of a pre-trained neural network model are trained on new data. [1] Fine-tuning can be done on the entire neural network, or on only a subset of its layers, in which case the layers that are not being fine-tuned are "frozen" (i.e., not changed during backpropagation). [2]