When.com Web Search

  1. Ad

    related to: example of modular arithmetic

Search results

  1. Results From The WOW.Com Content Network
  2. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book Disquisitiones Arithmeticae , published in 1801.

  3. Multiplicative group of integers modulo n - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_group_of...

    In modular arithmetic, the integers coprime (relatively prime) to n from the set {,, …,} of n non-negative integers form a group under multiplication modulo n, called the multiplicative group of integers modulo n.

  4. Primitive root modulo n - Wikipedia

    en.wikipedia.org/wiki/Primitive_root_modulo_n

    In modular arithmetic, a number g is a primitive root modulo n if every number a coprime to n is congruent to a power of g modulo n. That is, g is a primitive root modulo n if for every integer a coprime to n, there is some integer k for which g k ≡ a (mod n). Such a value k is called the index or discrete logarithm of a to the base g modulo n.

  5. Montgomery modular multiplication - Wikipedia

    en.wikipedia.org/wiki/Montgomery_modular...

    For example, suppose that N = 17 and that R = 100. The Montgomery forms of 3, 5, 7, and 15 are 300 mod 17 = 11, 500 mod 17 = 7, 700 mod 17 = 3, and 1500 mod 17 = 4. Addition and subtraction in Montgomery form are the same as ordinary modular addition and subtraction because of the distributive law: + = (+),

  6. Modulo - Wikipedia

    en.wikipedia.org/wiki/Modulo

    In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation.. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor.

  7. Category:Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Category:Modular_arithmetic

    In mathematics, modular arithmetic is a system of arithmetic for certain equivalence classes of integers, called congruence classes. Sometimes it is suggestively called 'clock arithmetic', where numbers 'wrap around' after they reach a certain value (the modulus). For example, when the modulus is 12, then any two numbers that leave the same ...

  8. Modulo (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Modulo_(mathematics)

    Modulo is a mathematical jargon that was introduced into mathematics in the book Disquisitiones Arithmeticae by Carl Friedrich Gauss in 1801. [3] Given the integers a, b and n, the expression "a ≡ b (mod n)", pronounced "a is congruent to b modulo n", means that a − b is an integer multiple of n, or equivalently, a and b both share the same remainder when divided by n.

  9. Residue number system - Wikipedia

    en.wikipedia.org/wiki/Residue_number_system

    Using a residue numeral system for arithmetic operations is also called multi-modular arithmetic. Multi-modular arithmetic is widely used for computation with large integers, typically in linear algebra , because it provides faster computation than with the usual numeral systems, even when the time for converting between numeral systems is ...