Search results
Results From The WOW.Com Content Network
The critical region [C α, ∞) is realized as the tail of the standard normal distribution. Critical value s of a statistical test are the boundaries of the acceptance region of the test. [41] The acceptance region is the set of values of the test statistic for which the null hypothesis is not rejected.
When provided a significance level , the critical regions would exist on the two tail ends of the distribution with an area of / each for a two-tailed test. Alternatively, the critical region would solely exist on the single tail end with an area of α {\displaystyle \alpha } for a one-tailed test.
The null hypothesis is rejected if the test statistic is in the critical region. If the Cochran test rejects the null hypothesis of equally effective treatments, pairwise multiple comparisons can be made by applying Cochran's Q test on the two treatments of interest. The exact distribution of the T statistic may be computed for small samples.
An f-test pdf with d1 and d2 = 10, at a significance level of 0.05. (Red shaded region indicates the critical region) An F-test is any statistical test used to compare the variances of two samples or the ratio of variances between multiple samples.
Critical value or threshold value can refer to: A quantitative threshold in medicine, chemistry and physics; Critical value (statistics), boundary of the acceptance region while testing a statistical hypothesis; Value of a function at a critical point (mathematics) Critical point (thermodynamics) of a statistical system.
The following table lists values for t distributions with ν degrees of freedom for a range of one-sided or two-sided critical regions. The first column is ν , the percentages along the top are confidence levels α , {\displaystyle \ \alpha \ ,} and the numbers in the body of the table are the t α , n − 1 {\displaystyle t_{\alpha ,n-1 ...
The test statistic is = = ¯ For significance level α, the critical region is >, where Χ α,k − 1 2 is the α-quantile of the chi-squared distribution with k − 1 degrees of freedom. The null hypothesis is rejected if the test statistic is in the critical region.
For the test of independence, also known as the test of homogeneity, a chi-squared probability of less than or equal to 0.05 (or the chi-squared statistic being at or larger than the 0.05 critical point) is commonly interpreted by applied workers as justification for rejecting the null hypothesis that the row variable is independent of the ...