When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Uranium-238 - Wikipedia

    en.wikipedia.org/wiki/Uranium-238

    The 238 U decay chain contributes six electron anti-neutrinos per 238 U nucleus (one per beta decay), resulting in a large detectable geoneutrino signal when decays occur within the Earth. [3] The decay of 238 U to daughter isotopes is extensively used in radiometric dating, particularly for material older than approximately 1 million years.

  3. Radon-222 - Wikipedia

    en.wikipedia.org/wiki/Radon-222

    It is transient in the decay chain of primordial uranium-238 and is the immediate decay product of radium-226. Radon-222 was first observed in 1899, and was identified as an isotope of a new element several years later. In 1957, the name radon, formerly the name of only radon-222, became the name of the element.

  4. Radon - Wikipedia

    en.wikipedia.org/wiki/Radon

    222 Rn belongs to the radium and uranium-238 decay chain, and has a half-life of 3.8235 days. Its first four products (excluding marginal decay schemes) are very short-lived, meaning that the corresponding disintegrations are indicative of the initial radon distribution. Its decay goes through the following sequence: [39]

  5. Radium-226 - Wikipedia

    en.wikipedia.org/wiki/Radium-226

    The decay-chain of uranium-238, which contains radium-226 as an intermediate decay product. 226 Ra occurs in the decay chain of uranium-238 (238 U), which is the most common naturally occurring isotope of uranium. It undergoes alpha decay to radon-222, which is also radioactive; the decay chain ultimately terminates at lead-206.

  6. Decay chain - Wikipedia

    en.wikipedia.org/wiki/Decay_chain

    The four most common modes of radioactive decay are: alpha decay, beta decay, inverse beta decay (considered as both positron emission and electron capture), and isomeric transition. Of these decay processes, only alpha decay (fission of a helium-4 nucleus) changes the atomic mass number ( A ) of the nucleus, and always decreases it by four.

  7. Health effects of radon - Wikipedia

    en.wikipedia.org/wiki/Health_effects_of_radon

    Radon-222 is formed as part of the uranium series i.e. the normal radioactive decay chain of uranium-238 that terminates in lead-206. Uranium has been present since the Earth was formed, and its most common isotope has a very long half-life (4.5 billion years), which is the time required for one-half of uranium to break down. Thus, uranium and ...

  8. Nuclear chain reaction - Wikipedia

    en.wikipedia.org/wiki/Nuclear_chain_reaction

    Since nuclear chain reactions may only require natural materials (such as water and uranium, if the uranium has sufficient amounts of 235 U), it was possible to have these chain reactions occur in the distant past when uranium-235 concentrations were higher than today, and where there was the right combination of materials within the Earth's crust.

  9. Uranium - Wikipedia

    en.wikipedia.org/wiki/Uranium

    Uranium-238 is the most stable isotope of uranium, with a half-life of about 4.463 × 10 9 years, [7] roughly the age of the Earth. Uranium-238 is predominantly an alpha emitter, decaying to thorium-234. It ultimately decays through the uranium series, which has 18 members, into lead-206. [17]