When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Newton's method in optimization - Wikipedia

    en.wikipedia.org/wiki/Newton's_method_in...

    Newton's method, in its original version, has several caveats: It does not work if the Hessian is not invertible. This is clear from the very definition of Newton's method, which requires taking the inverse of the Hessian. It may not converge at all, but can enter a cycle having more than 1 point. See the Newton's method § Failure analysis.

  3. Gradient descent - Wikipedia

    en.wikipedia.org/wiki/Gradient_descent

    Methods based on Newton's method and inversion of the Hessian using conjugate gradient techniques can be better alternatives. [20] [21] Generally, such methods converge in fewer iterations, but the cost of each iteration is higher.

  4. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    It is easy to find situations for which Newton's method oscillates endlessly between two distinct values. For example, for Newton's method as applied to a function f to oscillate between 0 and 1, it is only necessary that the tangent line to f at 0 intersects the x-axis at 1 and that the tangent line to f at 1 intersects the x-axis at 0. [19]

  5. Gradient method - Wikipedia

    en.wikipedia.org/wiki/Gradient_method

    In optimization, a gradient method is an algorithm to solve problems of the form min x ∈ R n f ( x ) {\displaystyle \min _{x\in \mathbb {R} ^{n}}\;f(x)} with the search directions defined by the gradient of the function at the current point.

  6. File:Newton optimization vs grad descent.svg - Wikipedia

    en.wikipedia.org/wiki/File:Newton_optimization...

    English: A comparison of gradient descent (green) and Newton's method (red) for minimizing a function (with small step sizes). Newton's method uses curvature information to take a more direct route. Newton's method uses curvature information to take a more direct route.

  7. Levenberg–Marquardt algorithm - Wikipedia

    en.wikipedia.org/wiki/Levenberg–Marquardt...

    The LMA interpolates between the Gauss–Newton algorithm (GNA) and the method of gradient descent. The LMA is more robust than the GNA, which means that in many cases it finds a solution even if it starts very far off the final minimum. For well-behaved functions and reasonable starting parameters, the LMA tends to be slower than the GNA.

  8. Subgradient method - Wikipedia

    en.wikipedia.org/wiki/Subgradient_method

    When the objective function is differentiable, sub-gradient methods for unconstrained problems use the same search direction as the method of steepest descent. Subgradient methods are slower than Newton's method when applied to minimize twice continuously differentiable convex functions. However, Newton's method fails to converge on problems ...

  9. Descent direction - Wikipedia

    en.wikipedia.org/wiki/Descent_direction

    Numerous methods exist to compute descent directions, all with differing merits, such as gradient descent or the conjugate gradient method. More generally, if P {\displaystyle P} is a positive definite matrix, then p k = − P ∇ f ( x k ) {\displaystyle p_{k}=-P\nabla f(x_{k})} is a descent direction at x k {\displaystyle x_{k}} . [ 1 ]