When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Gradient descent - Wikipedia

    en.wikipedia.org/wiki/Gradient_descent

    The properties of gradient descent depend on the properties of the objective function and the variant of gradient descent used (for example, if a line search step is used). The assumptions made affect the convergence rate, and other properties, that can be proven for gradient descent. [33]

  3. Gradient method - Wikipedia

    en.wikipedia.org/wiki/Gradient_method

    In optimization, a gradient method is an algorithm to solve problems of the form with the search directions defined by the gradient of the function at the current point. Examples of gradient methods are the gradient descent and the conjugate gradient.

  4. File:Gradient Descent in 2D.webm - Wikipedia

    en.wikipedia.org/wiki/File:Gradient_Descent_in_2...

    You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.

  5. Backtracking line search - Wikipedia

    en.wikipedia.org/wiki/Backtracking_line_search

    Another way is the so-called adaptive standard GD or SGD, some representatives are Adam, Adadelta, RMSProp and so on, see the article on Stochastic gradient descent. In adaptive standard GD or SGD, learning rates are allowed to vary at each iterate step n, but in a different manner from Backtracking line search for gradient descent.

  6. Stochastic gradient descent - Wikipedia

    en.wikipedia.org/wiki/Stochastic_gradient_descent

    Stochastic gradient descent competes with the L-BFGS algorithm, [citation needed] which is also widely used. Stochastic gradient descent has been used since at least 1960 for training linear regression models, originally under the name ADALINE. [25] Another stochastic gradient descent algorithm is the least mean squares (LMS) adaptive filter.

  7. Barzilai-Borwein method - Wikipedia

    en.wikipedia.org/wiki/Barzilai-Borwein_method

    The Barzilai-Borwein method [1] is an iterative gradient descent method for unconstrained optimization using either of two step sizes derived from the linear trend of the most recent two iterates. This method, and modifications, are globally convergent under mild conditions, [ 2 ] [ 3 ] and perform competitively with conjugate gradient methods ...

  8. Conjugate gradient method - Wikipedia

    en.wikipedia.org/wiki/Conjugate_gradient_method

    A comparison of the convergence of gradient descent with optimal step size (in green) and conjugate vector (in red) for minimizing a quadratic function associated with a given linear system. Conjugate gradient, assuming exact arithmetic, converges in at most n steps, where n is the size of the matrix of the system (here n = 2).

  9. t-distributed stochastic neighbor embedding - Wikipedia

    en.wikipedia.org/wiki/T-distributed_stochastic...

    The minimization of the Kullback–Leibler divergence with respect to the points is performed using gradient descent. The result of this optimization is a map that reflects the similarities between the high-dimensional inputs.