Search results
Results From The WOW.Com Content Network
Bin-packing with fragmentation or fragmentable object bin-packing is a variant of the bin packing problem in which it is allowed to break items into parts and put each part separately on a different bin. Breaking items into parts may allow for improving the overall performance, for example, minimizing the number of total bin.
The bin packing problem is a problem of packing items of different sizes into bins of identical capacity, such that the total number of bins is as small as possible. Finding the optimal solution is computationally hard. Karmarkar and Karp devised an algorithm that runs in polynomial time and finds a solution with at most + ( ()) bins, where ...
For each item from largest to smallest, find the first bin into which the item fits, if any. If such a bin is found, put the new item in it. Otherwise, open a new empty bin put the new item in it. In short: FFD orders the items by descending size, and then calls first-fit bin packing. An equivalent description of the FFD algorithm is as follows.
Each packing problem has a dual covering problem, which asks how many of the same objects are required to completely cover every region of the container, where objects are allowed to overlap. In a bin packing problem, people are given: A container, usually a two- or three-dimensional convex region, possibly of infinite size. Multiple containers ...
First-fit (FF) is an online algorithm for bin packing. Its input is a list of items of different sizes. Its output is a packing - a partition of the items into bins of fixed capacity, such that the sum of sizes of items in each bin is at most the capacity. Ideally, we would like to use as few bins as possible, but minimizing the number of bins ...
Next-fit is an online algorithm for bin packing. Its input is a list of items of different sizes. Its output is a packing - a partition of the items into bins of fixed capacity, such that the sum of sizes of items in each bin is at most the capacity. Ideally, we would like to use as few bins as possible, but minimizing the number of bins is an ...
Best-fit is an online algorithm for bin packing. Its input is a list of items of different sizes. Its output is a packing - a partition of the items into bins of fixed capacity, such that the sum of sizes of items in each bin is at most the capacity. Ideally, we would like to use as few bins as possible, but minimizing the number of bins is an ...
This problem is a dual of the bin packing problem: in bin covering, the bin sizes are bounded from below and the goal is to maximize their number; in bin packing, the bin sizes are bounded from above and the goal is to minimize their number. [1] The problem is NP-hard, but there are various efficient approximation algorithms: