Ad
related to: inner angles of a triangle
Search results
Results From The WOW.Com Content Network
An easy formula for these properties is that in any three points in any shape, there is a triangle formed. Triangle ABC (example) has 3 points, and therefore, three angles; angle A, angle B, and angle C. Angle A, B, and C will always, when put together, will form 360 degrees. So, ∠A + ∠B + ∠C = 360°
An exterior angle of a triangle is an angle that is a linear pair (and hence supplementary) to an interior angle. The measure of an exterior angle of a triangle is equal to the sum of the measures of the two interior angles that are not adjacent to it; this is the exterior angle theorem. [34]
The interior angle concept can be extended in a consistent way to crossed polygons such as star polygons by using the concept of directed angles.In general, the interior angle sum in degrees of any closed polygon, including crossed (self-intersecting) ones, is then given by 180(n–2k)°, where n is the number of vertices, and the strictly positive integer k is the number of total (360 ...
The angles of proper spherical triangles are (by convention) less than π, so that < + + < (Todhunter, [1] Art.22,32). In particular, the sum of the angles of a spherical triangle is strictly greater than the sum of the angles of a triangle defined on the Euclidean plane, which is always exactly π radians.
The triangle DEF is called the pedal triangle of P. [17] The antipedal triangle of P is the triangle formed by the lines through A, B, C perpendicular to PA, PB, PC respectively. Two points P and Q are called counter points if the pedal triangle of P is homothetic to the antipedal triangle of Q and the pedal triangle of Q is homothetic to the ...
Inside each isosceles triangle the pair of base angles are equal to each other, and are half of 180° minus the apex angle at the circle's center. Adding up these isosceles base angles yields the theorem, namely that the inscribed angle, ψ, is half the central angle, θ.
A circle with radius d around a point inside the triangle will meet or intersect at least two sides of the triangle. The distance from any point on a side of the triangle to another side of the triangle is equal or less than a = ln ( 1 + 2 ) ≈ 0.881 {\displaystyle a=\ln \left(1+{\sqrt {2}}\right)\approx 0.881} , with equality only for the ...
Triangle centers that have the same form for both Euclidean and hyperbolic geometry can be expressed using gyrotrigonometry. [11] [12] [13] In non-Euclidean geometry, the assumption that the interior angles of the triangle sum to 180 degrees must be discarded.