Search results
Results From The WOW.Com Content Network
The quadratic sieve attempts to find pairs of integers x and y(x) (where y(x) is a function of x) satisfying a much weaker condition than x 2 ≡ y 2 (mod n). It selects a set of primes called the factor base , and attempts to find x such that the least absolute remainder of y ( x ) = x 2 mod n factorizes completely over the factor base.
The principle of the number field sieve (both special and general) can be understood as an improvement to the simpler rational sieve or quadratic sieve. When using such algorithms to factor a large number n, it is necessary to search for smooth numbers (i.e. numbers with small prime factors) of order n 1/2.
Used in Python 2.3 and up, and Java SE 7. ... a cyclic algorithm to solve indeterminate quadratic equations, ... General number field sieve;
Let Δ be a negative integer with Δ = −dn, where d is a multiplier and Δ is the negative discriminant of some quadratic form. Take the t first primes p 1 = 2, p 2 = 3, p 3 = 5, ..., p t, for some t ∈ N. Let f q be a random prime form of G Δ with ( Δ / q ) = 1. Find a generating set X of G Δ.
The primary improvement that quadratic sieve makes over Fermat's factorization method is that instead of simply finding a square in the sequence of , it finds a subset of elements of this sequence whose product is a square, and it does this in a highly efficient manner.
The main problem with the page-segmented sieve of Atkin is the difficulty in implementing the prime-square-free culling sequences due to the span between culls rapidly growing far beyond the page buffer span; the time expended for this operation in Bernstein's implementation rapidly grows to many times the time expended in the actual quadratic ...
Note the set A does not have to be a set of prime factors, but it is typically a proper subset of the primes as seen in the factor base of Dixon's factorization method and the quadratic sieve. Likewise, it is what the general number field sieve uses to build its notion of smoothness, under the homomorphism ϕ : Z [ θ ] → Z / n Z ...
The second-fastest is the multiple polynomial quadratic sieve, and the fastest is the general number field sieve. The Lenstra elliptic-curve factorization is named after Hendrik Lenstra. Practically speaking, ECM is considered a special-purpose factoring algorithm, as it is most suitable for finding small factors.