When.com Web Search

  1. Ad

    related to: what are the properties of 3d shapes faces edges vertices

Search results

  1. Results From The WOW.Com Content Network
  2. Cube - Wikipedia

    en.wikipedia.org/wiki/Cube

    Hence, the cube has six faces, twelve edges, and eight vertices. [2] Because of such properties, it is categorized as one of the five Platonic solids, a polyhedron in which all the regular polygons are congruent and the same number of faces meet at each vertex. [3]

  3. Tetrahedron - Wikipedia

    en.wikipedia.org/wiki/Tetrahedron

    In geometry, a tetrahedron (pl.: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertices. The tetrahedron is the simplest of all the ordinary convex polyhedra. [1]

  4. List of uniform polyhedra - Wikipedia

    en.wikipedia.org/wiki/List_of_uniform_polyhedra

    In geometry, a uniform polyhedron is a polyhedron which has regular polygons as faces and is vertex-transitive (transitive on its vertices, isogonal, i.e. there is an isometry mapping any vertex onto any other). It follows that all vertices are congruent, and the polyhedron has a high degree of reflectional and rotational symmetry.

  5. Rhombicosidodecahedron - Wikipedia

    en.wikipedia.org/wiki/Rhombicosidodecahedron

    In geometry, the Rhombicosidodecahedron is an Archimedean solid, one of thirteen convex isogonal nonprismatic solids constructed of two or more types of regular polygon faces. It has 20 regular triangular faces, 30 square faces, 12 regular pentagonal faces, 60 vertices, and 120 edges.

  6. Polyhedron - Wikipedia

    en.wikipedia.org/wiki/Polyhedron

    The elements of the set correspond to the vertices, edges, faces and so on of the polytope: vertices have rank 0, edges rank 1, etc. with the partially ordered ranking corresponding to the dimensionality of the geometric elements. The empty set, required by set theory, has a rank of −1 and is sometimes said to correspond to the null polytope.

  7. Solid geometry - Wikipedia

    en.wikipedia.org/wiki/Solid_geometry

    A solid figure is the region of 3D space bounded by a two-dimensional closed surface; for example, a solid ball consists of a sphere and its interior. Solid geometry deals with the measurements of volumes of various solids, including pyramids , prisms (and other polyhedrons ), cubes , cylinders , cones (and truncated cones ).

  8. Face (geometry) - Wikipedia

    en.wikipedia.org/wiki/Face_(geometry)

    where V is the number of vertices, E is the number of edges, and F is the number of faces. This equation is known as Euler's polyhedron formula. Thus the number of faces is 2 more than the excess of the number of edges over the number of vertices. For example, a cube has 12 edges and 8 vertices, and hence 6 faces.

  9. Truncated tetrahedron - Wikipedia

    en.wikipedia.org/wiki/Truncated_tetrahedron

    The truncated tetrahedron can be constructed from a regular tetrahedron by cutting all of its vertices off, a process known as truncation. [1] The resulting polyhedron has 4 equilateral triangles and 4 regular hexagons, 18 edges, and 12 vertices. [2] With edge length 1, the Cartesian coordinates of the 12 vertices are points