Search results
Results From The WOW.Com Content Network
These tables list values of molar ionization energies, measured in kJ⋅mol −1. This is the energy per mole necessary to remove electrons from gaseous atoms or atomic ions. The first molar ionization energy applies to the neutral atoms.
Values from CRC are ionization energies given in the unit eV; other values are molar ionization energies given in the unit kJ/mol.The first of these quantities is used in atomic physics, the second in chemistry, but both refer to the same basic property of the element.
[1] [2] For example, the Gibbs free energy of a compound in the area of thermochemistry is often quantified in units of kilojoules per mole (symbol: kJ·mol −1 or kJ/mol), with 1 kilojoule = 1000 joules. [3] Physical quantities measured in J·mol −1 usually describe quantities of energy transferred during phase transformations or chemical ...
The activation energy (E a) of a reaction is measured in kilojoules per mole (kJ/mol) or kilocalories per mole (kcal/mol). [2] Activation energy can be thought of as the magnitude of the potential barrier (sometimes called the energy barrier) separating minima of the potential energy surface pertaining to the initial and final thermodynamic ...
3.6×10 9 J = 1 MW·h (megawatt-hour) 4.2×10 9 J: Energy released by explosion of 1 ton of TNT. 4.5×10 9 J: Average annual energy usage of a standard refrigerator [142] [143] 6.1×10 9 J: ≈ 1 bboe (barrel of oil equivalent) [144] 10 10 1.9×10 10 J: Kinetic energy of an Airbus A380 at cruising speed (560 tonnes at 511 knots or 263 m/s) 4.2 ...
where A and B are reactants C is a product a, b, and c are stoichiometric coefficients,. the reaction rate is often found to have the form: = [] [] Here is the reaction rate constant that depends on temperature, and [A] and [B] are the molar concentrations of substances A and B in moles per unit volume of solution, assuming the reaction is taking place throughout the volume of the ...
The standard Gibbs free energy of formation (G f °) of a compound is the change of Gibbs free energy that accompanies the formation of 1 mole of a substance in its standard state from its constituent elements in their standard states (the most stable form of the element at 1 bar of pressure and the specified temperature, usually 298.15 K or 25 °C).
In thermodynamics, the enthalpy of sublimation, or heat of sublimation, is the heat required to sublimate (change from solid to gas) one mole of a substance at a given combination of temperature and pressure, usually standard temperature and pressure (STP).