When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Eulerian path - Wikipedia

    en.wikipedia.org/wiki/Eulerian_path

    An Eulerian trail, [note 1] or Euler walk, in an undirected graph is a walk that uses each edge exactly once. If such a walk exists, the graph is called traversable or semi-eulerian. [3] An Eulerian cycle, [note 1] also called an Eulerian circuit or Euler tour, in an undirected graph is a cycle that uses each edge exactly once

  3. Seven Bridges of Königsberg - Wikipedia

    en.wikipedia.org/wiki/Seven_Bridges_of_Königsberg

    Since the graph corresponding to historical Königsberg has four nodes of odd degree, it cannot have an Eulerian path. An alternative form of the problem asks for a path that traverses all bridges and also has the same starting and ending point. Such a walk is called an Eulerian circuit or an Euler tour. Such a circuit exists if, and only if ...

  4. Longest path problem - Wikipedia

    en.wikipedia.org/wiki/Longest_path_problem

    A linear-time algorithm for finding a longest path in a tree was proposed by Edsger Dijkstra around 1960, while a formal proof of this algorithm was published in 2002. [15] Furthermore, a longest path can be computed in polynomial time on weighted trees, on block graphs, on cacti, [16] on bipartite permutation graphs, [17] and on Ptolemaic ...

  5. Pointer jumping - Wikipedia

    en.wikipedia.org/wiki/Pointer_jumping

    Pointer jumping or path doubling is a design technique for parallel algorithms that operate on pointer structures, such as linked lists and directed graphs. Pointer jumping allows an algorithm to follow paths with a time complexity that is logarithmic with respect to the length of the longest path.

  6. List of graph theory topics - Wikipedia

    en.wikipedia.org/wiki/List_of_graph_theory_topics

    Path (graph theory) Seven Bridges of Königsberg. Eulerian path; Three-cottage problem; Shortest path problem. Dijkstra's algorithm. Open Shortest Path First; Flooding algorithm; Route inspection problem; Hamiltonian path. Hamiltonian path problem; Knight's tour; Traveling salesman problem. Nearest neighbour algorithm; Bottleneck traveling ...

  7. Level ancestor problem - Wikipedia

    en.wikipedia.org/wiki/Level_ancestor_problem

    In fact in order to answer a level ancestor query, the algorithm needs to jump from a path to another until it reaches the root and there could be Θ(√ n) of such paths on a leaf-to-root path. This leads us to an algorithm that can pre-process the tree in O( n ) time and answers queries in O( √ n ).

  8. de Bruijn sequence - Wikipedia

    en.wikipedia.org/wiki/De_Bruijn_sequence

    This was largely forgotten, and Martin (1934) proved the existence of such cycles for general alphabet size in place of 2, with an algorithm for constructing them. Finally, when in 1944 Kees Posthumus conjectured the count 2 2 n − 1 − n {\displaystyle 2^{2^{n-1}-n}} for binary sequences, de Bruijn proved the conjecture in 1946, through ...

  9. Handshaking lemma - Wikipedia

    en.wikipedia.org/wiki/Handshaking_lemma

    Euler stated the fundamental results for this problem in terms of the number of odd vertices in the graph, which the handshaking lemma restricts to be an even number. If this number is zero, an Euler tour exists, and if it is two, an Euler path exists. Otherwise, the problem cannot be solved.