Search results
Results From The WOW.Com Content Network
Leonhard Euler (/ ˈ ɔɪ l ər / OY-lər; [b] German: [ˈleːɔnhaʁt ˈʔɔʏlɐ] ⓘ, Swiss Standard German: [ˈleɔnhard ˈɔʏlər]; 15 April 1707 – 18 September 1783) was a Swiss polymath who was active as a mathematician, physicist, astronomer, logician, geographer, and engineer.
Frontispiece of the first volume, first edition (1768) of Lettres a une princesse d'Allemagne sur divers sujets de physique & de philosophie. Letters to a German Princess, On Different Subjects in Physics and Philosophy (French: Lettres à une princesse d'Allemagne sur divers sujets de physique et de philosophie) were a series of 234 letters written by the mathematician Leonhard Euler between ...
The 18th-century Swiss mathematician Leonhard Euler (1707–1783) is among the most prolific and successful mathematicians in the history of the field. His seminal work had a profound impact in numerous areas of mathematics and he is widely credited for introducing and popularizing modern notation and terminology.
Institutiones calculi differentialis (Foundations of differential calculus) is a mathematical work written in 1748 by Leonhard Euler and published in 1755. It lays the groundwork for the differential calculus. It consists of a single volume containing two internal books; there are 9 chapters in book I, and 18 in book II.
Introductio in analysin infinitorum (Latin: [1] Introduction to the Analysis of the Infinite) is a two-volume work by Leonhard Euler which lays the foundations of mathematical analysis. Written in Latin and published in 1748, the Introductio contains 18 chapters in the first part and 22 chapters in the second.
Graph Theory, 1736–1936 is a book in the history of mathematics on graph theory.It focuses on the foundational documents of the field, beginning with the 1736 paper of Leonhard Euler on the Seven Bridges of Königsberg and ending with the first textbook on the subject, published in 1936 by Dénes Kőnig.
The name "Latin square" was inspired by mathematical papers by Leonhard Euler (1707–1783), who used Latin characters as symbols, [2] but any set of symbols can be used: in the above example, the alphabetic sequence A, B, C can be replaced by the integer sequence 1, 2, 3. Euler began the general theory of Latin squares.
Euler both developed the techniques of analysis and applied them to numerous problems in mechanics, [1] notably in later publications the calculus of variations. [2] Euler's laws of motion expressed scientific laws of Galileo and Newton in terms of points in reference frames and coordinate systems making them useful for calculation when the ...