Search results
Results From The WOW.Com Content Network
If, for example, there are two balls and three bins, then the number of ways of placing the balls is (+) = =. The table shows the six possible ways of distributing the two balls, the strings of stars and bars that represent them (with stars indicating balls and bars separating bins from one another), and the subsets that correspond to the strings.
In mathematics, a combination is a selection of items from a set that has distinct members, such that the order of selection does not matter (unlike permutations).For example, given three fruits, say an apple, an orange and a pear, there are three combinations of two that can be drawn from this set: an apple and a pear; an apple and an orange; or a pear and an orange.
Combinatorics is an area of mathematics primarily concerned with counting, both as a means and as an end to obtaining results, and certain properties of finite structures.It is closely related to many other areas of mathematics and has many applications ranging from logic to statistical physics and from evolutionary biology to computer science.
Combinatorics, a MathWorld article with many references. Combinatorics, from a MathPages.com portal. The Hyperbook of Combinatorics, a collection of math articles links. The Two Cultures of Mathematics by W. T. Gowers, article on problem solving vs theory building
Compare this with the three partitions of 5 into distinct terms: 5; 4 + 1; 3 + 2. Note that the ancient Sanskrit sages discovered many years before Fibonacci that the number of compositions of any natural number n as the sum of 1's and 2's is the nth Fibonacci number!
However, if a third organization is added, three separate channels are required. Adding a fourth organization requires six channels; five, ten; six, fifteen; etc. In general, it will take l = n ( n − 1 ) 2 = ( n 2 ) {\displaystyle l={\frac {n(n-1)}{2}}={n \choose 2}} communication lines for n organizations, which is just the number of 2 ...
In combinatorics, bijective proof is a proof technique for proving that two sets have equally many elements, or that the sets in two combinatorial classes have equal size, by finding a bijective function that maps one set one-to-one onto the other. This technique can be useful as a way of finding a formula for the number of elements of certain ...
The problem of finding a closed formula is known as algebraic enumeration, and frequently involves deriving a recurrence relation or generating function and using this to arrive at the desired closed form. Often, a complicated closed formula yields little insight into the behavior of the counting function as the number of counted objects grows.