When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Comparison of deep learning software - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_deep...

    Design goal Compatible with other formats Self-contained DNN Model Pre-processing and Post-processing Run-time configuration for tuning & calibration DNN model interconnect Common platform TensorFlow, Keras, Caffe, Torch: Algorithm training No No / Separate files in most formats No No No Yes ONNX: Algorithm training Yes

  3. Keras - Wikipedia

    en.wikipedia.org/wiki/Keras

    Keras was first independent software, then integrated into the TensorFlow library, and later supporting more. "Keras 3 is a full rewrite of Keras [and can be used] as a low-level cross-framework language to develop custom components such as layers, models, or metrics that can be used in native workflows in JAX, TensorFlow, or PyTorch — with ...

  4. Open-source artificial intelligence - Wikipedia

    en.wikipedia.org/wiki/Open-source_artificial...

    Open-source artificial intelligence has brought widespread accessibility to machine learning (ML) tools, enabling developers to implement and experiment with ML models across various industries. Sci-kit Learn, Tensorflow, and PyTorch are three of the most widely used open-source ML libraries, each contributing unique capabilities to the field. [58]

  5. PyTorch - Wikipedia

    en.wikipedia.org/wiki/PyTorch

    In September 2022, Meta announced that PyTorch would be governed by the independent PyTorch Foundation, a newly created subsidiary of the Linux Foundation. [ 24 ] PyTorch 2.0 was released on 15 March 2023, introducing TorchDynamo , a Python-level compiler that makes code run up to 2x faster, along with significant improvements in training and ...

  6. MindSpore - Wikipedia

    en.wikipedia.org/wiki/MindSpore

    On April 24, 2024, Huawei's MindSpore 2.3.RC1 was released to open source community with Foundation Model Training, Full-Stack Upgrade of Foundation Model Inference, Static Graph Optimization, IT Features and new MindSpore Elec MT (MindSpore-powered magnetotelluric) Intelligent Inversion Model.

  7. TensorFlow - Wikipedia

    en.wikipedia.org/wiki/TensorFlow

    These models are compressed and optimized in order to be more efficient and have a higher performance on smaller capacity devices. [64] TensorFlow Lite uses FlatBuffers as the data serialization format for network models, eschewing the Protocol Buffers format used by standard TensorFlow models. [64]

  8. Torch (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Torch_(machine_learning)

    The torch package also simplifies object-oriented programming and serialization by providing various convenience functions which are used throughout its packages. The torch.class(classname, parentclass) function can be used to create object factories ().

  9. CatBoost - Wikipedia

    en.wikipedia.org/wiki/Catboost

    [11] along with TensorFlow, Pytorch, XGBoost and 8 other libraries. Kaggle listed CatBoost as one of the most frequently used machine learning (ML) frameworks in the world. It was listed as the top-8 most frequently used ML framework in the 2020 survey [12] and as the top-7 most frequently used ML framework in the 2021 survey. [13]