When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. k-nearest neighbors algorithm - Wikipedia

    en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

    An object is classified by a plurality vote of its neighbors, with the object being assigned to the class most common among its k nearest neighbors (k is a positive integer, typically small). If k = 1, then the object is simply assigned to the class of that single nearest neighbor. The k-NN algorithm can also be generalized for regression.

  3. Nearest neighbor search - Wikipedia

    en.wikipedia.org/wiki/Nearest_neighbor_search

    k-nearest neighbor search identifies the top k nearest neighbors to the query. This technique is commonly used in predictive analytics to estimate or classify a point based on the consensus of its neighbors. k-nearest neighbor graphs are graphs in which every point is connected to its k nearest neighbors.

  4. Neighbourhood components analysis - Wikipedia

    en.wikipedia.org/wiki/Neighbourhood_components...

    Neighbourhood components analysis is a supervised learning method for classifying multivariate data into distinct classes according to a given distance metric over the data. . Functionally, it serves the same purposes as the K-nearest neighbors algorithm and makes direct use of a related concept termed stochastic nearest neighbo

  5. Structured kNN - Wikipedia

    en.wikipedia.org/wiki/Structured_kNN

    Structured k-nearest neighbours (SkNN) [1] [2] [3] is a machine learning algorithm that generalizes k-nearest neighbors (k-NN). k-NN supports binary classification, multiclass classification, and regression, [4] whereas SkNN allows training of a classifier for general structured output.

  6. Large margin nearest neighbor - Wikipedia

    en.wikipedia.org/wiki/Large_Margin_Nearest_Neighbor

    Large margin nearest neighbor (LMNN) [1] classification is a statistical machine learning algorithm for metric learning. It learns a pseudometric designed for k-nearest neighbor classification. The algorithm is based on semidefinite programming , a sub-class of convex optimization .

  7. k-d tree - Wikipedia

    en.wikipedia.org/wiki/K-d_tree

    Additionally, even in low-dimensional space, if the average pairwise distance between the k nearest neighbors of the query point is significantly less than the average distance between the query point and each of the k nearest neighbors, the performance of nearest neighbor search degrades towards linear, since the distances from the query point ...

  8. iDistance - Wikipedia

    en.wikipedia.org/wiki/IDistance

    In pattern recognition, the iDistance is an indexing and query processing technique for k-nearest neighbor queries on point data in multi-dimensional metric spaces.The kNN query is one of the hardest problems on multi-dimensional data, especially when the dimensionality of the data is high.

  9. Multiclass classification - Wikipedia

    en.wikipedia.org/wiki/Multiclass_classification

    k-nearest neighbors kNN is considered among the oldest non-parametric classification algorithms. To classify an unknown example, the distance from that example to every other training example is measured. The k smallest distances are identified, and the most represented class by these k nearest neighbours is considered the output class label.