When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Perceptron - Wikipedia

    en.wikipedia.org/wiki/Perceptron

    Below is an example of a learning algorithm for a single-layer perceptron with a single output unit. For a single-layer perceptron with multiple output units, since the weights of one output unit are completely separate from all the others', the same algorithm can be run for each output unit.

  3. Types of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/Types_of_artificial_neural...

    An autoencoder, autoassociator or Diabolo network [8]: 19 is similar to the multilayer perceptron (MLP) – with an input layer, an output layer and one or more hidden layers connecting them. However, the output layer has the same number of units as the input layer. Its purpose is to reconstruct its own inputs (instead of emitting a target value).

  4. Multilayer perceptron - Wikipedia

    en.wikipedia.org/wiki/Multilayer_perceptron

    If a multilayer perceptron has a linear activation function in all neurons, that is, a linear function that maps the weighted inputs to the output of each neuron, then linear algebra shows that any number of layers can be reduced to a two-layer input-output model.

  5. Feedforward neural network - Wikipedia

    en.wikipedia.org/wiki/Feedforward_neural_network

    The bottom layer of inputs is not always considered a real neural network layer. A multilayer perceptron (MLP) is a misnomer for a modern feedforward artificial neural network, consisting of fully connected neurons (hence the synonym sometimes used of fully connected network (FCN)), often with a nonlinear kind of activation function, organized ...

  6. Layer (deep learning) - Wikipedia

    en.wikipedia.org/wiki/Layer_(Deep_Learning)

    The first type of layer is the Dense layer, also called the fully-connected layer, [1] [2] [3] and is used for abstract representations of input data. In this layer, neurons connect to every neuron in the preceding layer. In multilayer perceptron networks, these layers are stacked together.

  7. Universal approximation theorem - Wikipedia

    en.wikipedia.org/wiki/Universal_approximation...

    Also, certain non-continuous activation functions can be used to approximate a sigmoid function, which then allows the above theorem to apply to those functions. For example, the step function works. In particular, this shows that a perceptron network with a single infinitely wide hidden layer can approximate arbitrary functions.

  8. Delta rule - Wikipedia

    en.wikipedia.org/wiki/Delta_rule

    The perceptron uses the Heaviside step function as the activation function (), and that means that ′ does not exist at zero, and is equal to zero elsewhere, which makes the direct application of the delta rule impossible.

  9. Mark I Perceptron - Wikipedia

    en.wikipedia.org/wiki/Mark_I_Perceptron

    The Mark I Perceptron achieved 99.8% accuracy on a test dataset with 500 neurons in a single layer. The size of the training dataset was 10,000 example images. It took 3 seconds for the training pipeline to go through a single image.