Search results
Results From The WOW.Com Content Network
The bond dissociation energy (enthalpy) [4] is also referred to as bond disruption energy, bond energy, bond strength, or binding energy (abbreviation: BDE, BE, or D). It is defined as the standard enthalpy change of the following fission: R—X → R + X. The BDE, denoted by Dº(R—X), is usually derived by the thermochemical equation,
This method is based on Hess's law, which states that the enthalpy change is the same for a chemical reaction which occurs as a single reaction or in several steps. If the enthalpies for each step can be measured, then their sum gives the enthalpy of the overall single reaction. [11]
The change in enthalpy for a reaction can be calculated from the enthalpies of formation of the reactants and the products Elements in their standard states make no contribution to the enthalpy calculations for the reaction, since the enthalpy of an element in its standard state is zero.
The value of the enthalpy of solvation is the sum of these individual steps: = +. Dissolving ammonium nitrate in water is endothermic. The energy released by the solvation of the ammonium ions and nitrate ions is less than the energy absorbed in breaking up the ammonium nitrate ionic lattice and the attractions between water molecules.
The Van 't Hoff equation relates the change in the equilibrium constant, K eq, of a chemical reaction to the change in temperature, T, given the standard enthalpy change, Δ r H ⊖, for the process. The subscript r {\displaystyle r} means "reaction" and the superscript ⊖ {\displaystyle \ominus } means "standard".
The term bond-dissociation energy is similar to the related notion of bond-dissociation enthalpy (or bond enthalpy), which is sometimes used interchangeably.However, some authors make the distinction that the bond-dissociation energy (D 0) refers to the enthalpy change at 0 K, while the term bond-dissociation enthalpy is used for the enthalpy change at 298 K (unambiguously denoted DH° 298).
Hence, the main functional application of Gibbs energy from a thermodynamic database is its change in value during the formation of a compound from the standard-state elements, or for any standard chemical reaction (ΔG° form or ΔG° rx). The SI units of Gibbs energy are the same as for enthalpy (J/mol).
The standard state of a material (pure substance, mixture or solution) is a reference point used to calculate its properties under different conditions.A degree sign (°) or a superscript Plimsoll symbol (⦵) is used to designate a thermodynamic quantity in the standard state, such as change in enthalpy (ΔH°), change in entropy (ΔS°), or change in Gibbs free energy (ΔG°).