Search results
Results From The WOW.Com Content Network
In each term of an electron configuration, n is the positive integer that precedes each orbital letter (helium's electron configuration is 1s 2, therefore n = 1, and the orbital contains two electrons). An atom's nth electron shell can accommodate 2n 2 electrons. For example, the first shell can accommodate two electrons, the second shell eight ...
In this way, the electrons of an atom or ion form the most stable electron configuration possible. An example is the configuration 1s 2 2s 2 2p 6 3s 2 3p 3 for the phosphorus atom, meaning that the 1s subshell has 2 electrons, the 2s subshell has 2 electrons, the 2p subshell has 6 electrons, and so on.
This page shows the electron configurations of the neutral gaseous atoms in their ground states. For each atom the subshells are given first in concise form, then with all subshells written out, followed by the number of electrons per shell. For phosphorus (element 15) as an example, the concise form is [Ne] 3s 2 3p 3.
For example, a sodium atom, Na, has a single electron in its valence shell, surrounding 2 stable, filled inner shells of 2 and 8 electrons. Since these filled shells are very stable, a sodium atom tends to lose its extra electron and attain this stable configuration, becoming a sodium cation in the process
LS coupling is for a parent ion and J 1 L 2 coupling is for a coupling of the parent ion and the excited electron. The parent ion is an unexcited part of the atom. For example, in Ar atom excited from a ground state ...3p 6 to an excited state ...3p 5 4p in electronic configuration, 3p 5 is for the parent ion while 4p is for the excited ...
Grayed out electron numbers indicate subshells filled to their maximum. Bracketed noble gas symbols on the left represent inner configurations that are the same in each period. Written out, these are: He, 2, helium : 1s 2 Ne, 10, neon : 1s 2 2s 2 2p 6 Ar, 18, argon : 1s 2 2s 2 2p 6 3s 2 3p 6 Kr, 36, krypton : 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 ...
As an example, consider the ground state of silicon.The electron configuration of Si is 1s 2 2s 2 2p 6 3s 2 3p 2 (see spectroscopic notation).We need to consider only the outer 3p 2 electrons, for which it can be shown (see term symbols) that the possible terms allowed by the Pauli exclusion principle are 1 D , 3 P , and 1 S.
For example, manganese (Mn) has configuration 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 5; this is abbreviated to [Ar] 4s 2 3d 5, where [Ar] denotes a core configuration identical to that of the noble gas argon. In this atom, a 3d electron has energy similar to that of a 4s electron, and much higher than that of a 3s or 3p electron.