When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Lehmer random number generator - Wikipedia

    en.wikipedia.org/wiki/Lehmer_random_number_generator

    Using a modulus m which is a power of two makes for a particularly convenient computer implementation, but comes at a cost: the period is at most m/4, and the lower bits have periods shorter than that. This is because the lowest k bits form a modulo-2 k generator all by themselves; the higher-order bits never affect lower-order bits. [10]

  3. Least common multiple - Wikipedia

    en.wikipedia.org/wiki/Least_common_multiple

    For example, 10 is a multiple of 5 because 5 × 2 = 10, so 10 is divisible by 5 and 2. Because 10 is the smallest positive integer that is divisible by both 5 and 2, it is the least common multiple of 5 and 2. By the same principle, 10 is the least common multiple of −5 and −2 as well.

  4. Linear congruential generator - Wikipedia

    en.wikipedia.org/wiki/Linear_congruential_generator

    Each row shows the state evolving until it repeats. The top row shows a generator with m = 9, a = 2, c = 0, and a seed of 1, which produces a cycle of length 6. The second row is the same generator with a seed of 3, which produces a cycle of length 2. Using a = 4 and c = 1 (bottom row) gives a cycle length of 9 with any seed in [0, 8].

  5. Combined linear congruential generator - Wikipedia

    en.wikipedia.org/wiki/Combined_Linear_Congruenti...

    The maximum period of the two LCGs used is calculated using the formula: [1] This equates to 2.1×10 9 for the two LCGs used. This CLCG shown in this example has a maximum period of: ( m 11 ) ( m 2 − 1 ) / 2 ≈ 2.3 × 10 18 {\displaystyle (m_{1}-1)(m_{2}-1)/2\approx 2.3\times 10^{18}} This represents a tremendous improvement over the ...

  6. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    s −1 = 0, t −1 = 1. Using this recursion, Bézout's integers s and t are given by s = s N and t = t N, where N + 1 is the step on which the algorithm terminates with r N+1 = 0. The validity of this approach can be shown by induction. Assume that the recursion formula is correct up to step k − 1 of the algorithm; in other words, assume ...

  7. Recamán's sequence - Wikipedia

    en.wikipedia.org/wiki/Recamán's_sequence

    In mathematics and computer science, Recamán's sequence [1] [2] is a well known sequence defined by a recurrence relation. Because its elements are related to the previous elements in a straightforward way, they are often defined using recursion.

  8. Longest common subsequence - Wikipedia

    en.wikipedia.org/wiki/Longest_common_subsequence

    LCS(R 1, C 1) is determined by comparing the first elements in each sequence. G and A are not the same, so this LCS gets (using the "second property") the longest of the two sequences, LCS(R 1, C 0) and LCS(R 0, C 1). According to the table, both of these are empty, so LCS(R 1, C 1) is also empty, as shown in the table below.

  9. Range minimum query - Wikipedia

    en.wikipedia.org/wiki/Range_minimum_query

    Range minimum query reduced to the lowest common ancestor problem.. Given an array A[1 … n] of n objects taken from a totally ordered set, such as integers, the range minimum query RMQ A (l,r) =arg min A[k] (with 1 ≤ l ≤ k ≤ r ≤ n) returns the position of the minimal element in the specified sub-array A[l …

  1. Related searches lcm using recursion in c++ 1 10

    example of recursion in c++