Ad
related to: sin calculator radians to minutes and days hours free
Search results
Results From The WOW.Com Content Network
The sine and tangent small-angle approximations are used in relation to the double-slit experiment or a diffraction grating to develop simplified equations like the following, where y is the distance of a fringe from the center of maximum light intensity, m is the order of the fringe, D is the distance between the slits and projection screen ...
A trigonometric number is a number that can be expressed as the sine or cosine of a rational multiple of π radians. [2] Since sin ( x ) = cos ( x − π / 2 ) , {\displaystyle \sin(x)=\cos(x-\pi /2),} the case of a sine can be omitted from this definition.
A simple arithmetic calculator was first included with Windows 1.0. [5]In Windows 3.0, a scientific mode was added, which included exponents and roots, logarithms, factorial-based functions, trigonometry (supports radian, degree and gradians angles), base conversions (2, 8, 10, 16), logic operations, statistical functions such as single variable statistics and linear regression.
A minute of arc, arcminute (abbreviated as arcmin), arc minute, or minute arc, denoted by the symbol ′, is a unit of angular measurement equal to 1 / 60 of a degree. [1] Since one degree is 1 / 360 of a turn, or complete rotation , one arcminute is 1 / 21 600 of a turn.
The sine and the cosine functions, for example, are used to describe simple harmonic motion, which models many natural phenomena, such as the movement of a mass attached to a spring and, for small angles, the pendular motion of a mass hanging by a string. The sine and cosine functions are one-dimensional projections of uniform circular motion.
Scientific calculators have buttons for calculating the main trigonometric functions (sin, cos, tan, and sometimes cis and their inverses). [51] Most allow a choice of angle measurement methods: degrees, radians, and sometimes gradians. Most computer programming languages provide function libraries that include the trigonometric functions. [52]
The time is usually based on a 12-hour clock. A method to solve such problems is to consider the rate of change of the angle in degrees per minute. The hour hand of a normal 12-hour analogue clock turns 360° in 12 hours (720 minutes) or 0.5° per minute. The minute hand rotates through 360° in 60 minutes or 6° per minute. [1]
The formula is given in verses 17–19, chapter VII, Mahabhaskariya of Bhāskara I. A translation of the verses is given below: [3] (Now) I briefly state the rule (for finding the bhujaphala and the kotiphala, etc.) without making use of the Rsine-differences 225, etc. Subtract the degrees of a bhuja (or koti) from the degrees of a half circle (that is, 180 degrees).