Search results
Results From The WOW.Com Content Network
The IPCC believes that "measured stratospheric O3 losses over the past two decades have generated a negative forcing of the surface-troposphere system" of around 0.15 0.10 watts per square metre (W/m 2). [39] Furthermore, rising air temperatures often improve ozone-forming processes, which has a repercussion on climate, as well.
It is present in very low concentrations throughout the atmosphere, with its highest concentration high in the ozone layer of the stratosphere, which absorbs most of the Sun's ultraviolet (UV) radiation. Ozone's odor is reminiscent of chlorine, and detectable by many people at concentrations of as little as 0.1 ppm in air.
About 90% of the ozone in the atmosphere is contained in the stratosphere. Ozone concentrations are greatest between about 20 and 40 kilometres (66,000 and 131,000 ft), where they range from about 2 to 8 parts per million. If all of the ozone were compressed to the pressure of the air at sea level, it would be only 3 millimetres (1 ⁄ 8 inch ...
The most familiar is molecular oxygen (O 2), present at significant levels in Earth's atmosphere and also known as dioxygen or triplet oxygen. Another is the highly reactive ozone (O 3). Others are: Atomic oxygen (O 1), a free radical. Singlet oxygen (O * 2), one of two metastable states of molecular oxygen. Tetraoxygen (O 4), another ...
The atmosphere of Earth is composed of a layer of gas mixture that surrounds the Earth's planetary surface (both lands and oceans), known collectively as air, with variable quantities of suspended aerosols and particulates (which create weather features such as clouds and hazes), all retained by Earth's gravity.
Trace gases are gases that are present in small amounts within an environment such as a planet's atmosphere.Trace gases in Earth's atmosphere are gases other than nitrogen (78.1%), oxygen (20.9%), and argon (0.934%) which, in combination, make up 99.934% of its atmosphere (not including water vapor).
Specifically, Lu's work defines "ozone hole" as "an area with O3 loss in percent larger than 25%, with respect to the undisturbed O3 value when there were no significant CFCs in the stratosphere (~ in the 1960s)" [163] instead of the general definition of 220 Dobson units or lower. Dr Marta Abalos Alvarez has added "Ozone depletion in the ...
Thus, at the upper thermosphere, where air density is very low and photon flux is high, oxygen photodissociation is fast while ozone creation is low, thus its concentration is low. Thus the most important reactions are oxygen photodissociation and oxygen recombination, with most of the oxygen molecules dissociated to oxygen atoms.