Ads
related to: google maps distance in excel
Search results
Results From The WOW.Com Content Network
Vincenty's formulae are two related iterative methods used in geodesy to calculate the distance between two points on the surface of a spheroid, developed by Thaddeus Vincenty (1975a). They are based on the assumption that the figure of the Earth is an oblate spheroid, and hence are more accurate than methods that assume a spherical Earth, such ...
d is the distance between the two points along a great circle of the sphere (see spherical distance), r is the radius of the sphere. The haversine formula allows the haversine of θ to be computed directly from the latitude (represented by φ) and longitude (represented by λ) of the two points:
Geographical distance or geodetic distance is the distance measured along the surface of the Earth, or the shortest arch length. The formulae in this article calculate distances between points which are defined by geographical coordinates in terms of latitude and longitude. This distance is an element in solving the second (inverse) geodetic ...
Google Maps is a web mapping platform and consumer application offered by Google. It offers satellite imagery, aerial photography, street maps, 360° interactive panoramic views of streets (Street View), real-time traffic conditions, and route planning for traveling by foot, car, bike, air (in beta) and public transportation.
If the azimuthal equidistant projection map is centered about a point whose antipodal point lies on land and the map is extended to the maximum distance of 20,000 km (12,427 mi) the antipode point smears into a large circle. This is shown in the example of two maps centered about Los Angeles, and Taipei.
The distance along the great circle will then be s 12 = Rσ 12, where R is the assumed radius of the Earth and σ 12 is expressed in radians. Using the mean Earth radius , R = R 1 ≈ 6,371 km (3,959 mi) yields results for the distance s 12 which are within 1% of the geodesic length for the WGS84 ellipsoid; see Geodesics on an ellipsoid for ...
Converting ruler distance on the Mercator map into true (great circle) distance on the sphere is straightforward along the equator but nowhere else. One problem is the variation of scale with latitude, and another is that straight lines on the map ( rhumb lines ), other than the meridians or the equator, do not correspond to great circles.
In China, Pei Xiu (224–271) identified "measuring right angles and acute angles" as the fifth of his six principles for accurate map-making, necessary to accurately establish distances, [5] while Liu Hui (c. 263) gives a version of the calculation above, for measuring perpendicular distances to inaccessible places.