Search results
Results From The WOW.Com Content Network
Name Dim Equation Applications Landau–Lifshitz model: 1+n = + Magnetic field in solids Lin–Tsien equation: 1+2 + = Liouville equation: any + = Liouville–Bratu–Gelfand equation
In mathematics, the unitary group of degree n, denoted U(n), is the group of n × n unitary matrices, with the group operation of matrix multiplication.The unitary group is a subgroup of the general linear group GL(n, C), and it has as a subgroup the special unitary group, consisting of those unitary matrices with determinant 1.
Graphs of y = b x for various bases b: base 10, base e, base 2, base 1 / 2 . Each curve passes through the point (0, 1) because any nonzero number raised to the power of 0 is 1. At x = 1, the value of y equals the base because any number raised to the power of 1 is the number itself.
Elements r and s of R are called associate if there exists a unit u in R such that r = us; then write r ~ s. In any ring, pairs of additive inverse elements [c] x and −x are associate, since any ring includes the unit −1. For example, 6 and −6 are associate in Z. In general, ~ is an equivalence relation on R.
The product and the multiplicative inverse of two roots of unity are also roots of unity. In fact, if x m = 1 and y n = 1, then (x −1) m = 1, and (xy) k = 1, where k is the least common multiple of m and n. Therefore, the roots of unity form an abelian group under multiplication. This group is the torsion subgroup of the circle group.
The following is a list of all the cars that have raced in the combined history of the Bathurst 1000 motor race, from the 1960 Armstrong 500 up until today and including both races that were held in 1997 and 1998.
The rate of change of f with respect to x is usually the partial derivative of f with respect to x; in this case, =. However, if y depends on x, the partial derivative does not give the true rate of change of f as x changes because the partial derivative assumes that y is fixed. Suppose we are constrained to the line
In linear algebra, an invertible complex square matrix U is unitary if its matrix inverse U −1 equals its conjugate transpose U *, that is, if = =, where I is the identity matrix.. In physics, especially in quantum mechanics, the conjugate transpose is referred to as the Hermitian adjoint of a matrix and is denoted by a dagger ( † ), so the equation above is written