Ads
related to: decomposing numbers anchor chart
Search results
Results From The WOW.Com Content Network
In graph theory, the (a, b)-decomposition of an undirected graph is a partition of its edges into a + 1 sets, each one of them inducing a forest, except one which induces a graph with maximum degree b.
The representation of a rotation as a quaternion (4 numbers) is more compact than the representation as an orthogonal matrix (9 numbers). Furthermore, for a given axis and angle, one can easily construct the corresponding quaternion, and conversely, for a given quaternion one can easily read off the axis and the angle.
One object represents one unit. When the number of objects is equal to or greater than the base b, then a group of objects is created with b objects. When the number of these groups exceeds b, then a group of these groups of objects is created with b groups of b objects; and so on. Thus the same number in different bases will have different values:
Demonstration, with Cuisenaire rods, of the first four highly composite numbers: 1, 2, 4, 6. A highly composite number is a positive integer that has more divisors than all smaller positive integers. If d(n) denotes the number of divisors of a positive integer n, then a positive integer N is highly composite if d(N) > d(n) for all n < N.
In mathematics, the polar decomposition of a square real or complex matrix is a factorization of the form =, where is a unitary matrix and is a positive semi-definite Hermitian matrix (is an orthogonal matrix and is a positive semi-definite symmetric matrix in the real case), both square and of the same size.
When K is the field of real numbers, some of the p i may be quadratic, so, in the partial fraction decomposition, quotients of linear polynomials by powers of quadratic polynomials may also occur. In the preceding theorem, one may replace "distinct irreducible polynomials" by " pairwise coprime polynomials that are coprime with their derivative".
Let be a vector space over a field. [6] For instance, suppose is or , the standard n-dimensional space of column vectors over the real or complex numbers, respectively.In this case, the idea of representation theory is to do abstract algebra concretely by using matrices of real or complex numbers.
In mathematics, complex projective space is the projective space with respect to the field of complex numbers.By analogy, whereas the points of a real projective space label the lines through the origin of a real Euclidean space, the points of a complex projective space label the complex lines through the origin of a complex Euclidean space (see below for an intuitive account).