When.com Web Search

  1. Ad

    related to: smoothing techniques in data mining journal pdf printable

Search results

  1. Results From The WOW.Com Content Network
  2. Smoothing - Wikipedia

    en.wikipedia.org/wiki/Smoothing

    Smoothing may be distinguished from the related and partially overlapping concept of curve fitting in the following ways: . curve fitting often involves the use of an explicit function form for the result, whereas the immediate results from smoothing are the "smoothed" values with no later use made of a functional form if there is one;

  3. List of text mining methods - Wikipedia

    en.wikipedia.org/wiki/List_of_text_mining_methods

    Different text mining methods are used based on their suitability for a data set. Text mining is the process of extracting data from unstructured text and finding patterns or relations. Below is a list of text mining methodologies. Centroid-based Clustering: Unsupervised learning method. Clusters are determined based on data points. [1]

  4. Additive smoothing - Wikipedia

    en.wikipedia.org/wiki/Additive_smoothing

    Additive smoothing allows the assignment of non-zero probabilities to words which do not occur in the sample. Studies have shown that additive smoothing is more effective than other probability smoothing methods in several retrieval tasks such as language-model-based pseudo-relevance feedback and recommender systems. [5] [6]

  5. Lulu smoothing - Wikipedia

    en.wikipedia.org/wiki/Lulu_smoothing

    In signal processing, Lulu smoothing is a nonlinear mathematical technique for removing impulsive noise from a data sequence such as a time series.It is a nonlinear equivalent to taking a moving average (or other smoothing technique) of a time series, and is similar to other nonlinear smoothing techniques, such as Tukey or median smoothing.

  6. Exponential smoothing - Wikipedia

    en.wikipedia.org/wiki/Exponential_smoothing

    Exponential smoothing or exponential moving average (EMA) is a rule of thumb technique for smoothing time series data using the exponential window function. Whereas in the simple moving average the past observations are weighted equally, exponential functions are used to assign exponentially decreasing weights over time. It is an easily learned ...

  7. Savitzky–Golay filter - Wikipedia

    en.wikipedia.org/wiki/Savitzky–Golay_filter

    The "moving average filter" is a trivial example of a Savitzky–Golay filter that is commonly used with time series data to smooth out short-term fluctuations and highlight longer-term trends or cycles. Each subset of the data set is fit with a straight horizontal line as opposed to a higher order polynomial.

  8. Curve fitting - Wikipedia

    en.wikipedia.org/wiki/Curve_fitting

    Fitting of a noisy curve by an asymmetrical peak model, with an iterative process (Gauss–Newton algorithm with variable damping factor α).Curve fitting [1] [2] is the process of constructing a curve, or mathematical function, that has the best fit to a series of data points, [3] possibly subject to constraints.

  9. Local regression - Wikipedia

    en.wikipedia.org/wiki/Local_regression

    Local regression or local polynomial regression, [1] also known as moving regression, [2] is a generalization of the moving average and polynomial regression. [3] Its most common methods, initially developed for scatterplot smoothing, are LOESS (locally estimated scatterplot smoothing) and LOWESS (locally weighted scatterplot smoothing), both pronounced / ˈ l oʊ ɛ s / LOH-ess.