When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Symmetry of second derivatives - Wikipedia

    en.wikipedia.org/wiki/Symmetry_of_second_derivatives

    It can matter, looking at the first-order terms, which is applied first. This leads to the construction of pathological examples in which second derivatives are non-symmetric. This kind of example belongs to the theory of real analysis where the pointwise value of functions matters.

  3. Exterior derivative - Wikipedia

    en.wikipedia.org/wiki/Exterior_derivative

    The exterior derivative is defined to be the unique ℝ-linear mapping from k-forms to (k + 1)-forms that has the following properties: The operator d {\displaystyle d} applied to the 0 {\displaystyle 0} -form f {\displaystyle f} is the differential d f {\displaystyle df} of f {\displaystyle f}

  4. Symmetric derivative - Wikipedia

    en.wikipedia.org/wiki/Symmetric_derivative

    The symmetric derivative at a given point equals the arithmetic mean of the left and right derivatives at that point, if the latter two both exist. [1] [2]: 6 Neither Rolle's theorem nor the mean-value theorem hold for the symmetric derivative; some similar but weaker statements have been proved.

  5. Second derivative - Wikipedia

    en.wikipedia.org/wiki/Second_derivative

    The second derivative of a function f can be used to determine the concavity of the graph of f. [2] A function whose second derivative is positive is said to be concave up (also referred to as convex), meaning that the tangent line near the point where it touches the function will lie below the graph of the function.

  6. Maxwell relations - Wikipedia

    en.wikipedia.org/wiki/Maxwell_relations

    Maxwell's relations are a set of equations in thermodynamics which are derivable from the symmetry of second derivatives and from the definitions of the thermodynamic potentials. These relations are named for the nineteenth-century physicist James Clerk Maxwell .

  7. Curl (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Curl_(mathematics)

    The curl of the gradient of any scalar field φ is always the zero vector field = which follows from the antisymmetry in the definition of the curl, and the symmetry of second derivatives. The divergence of the curl of any vector field is equal to zero: ∇ ⋅ ( ∇ × F ) = 0. {\displaystyle \nabla \cdot (\nabla \times \mathbf {F} )=0.}

  8. Calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Calculus_of_Variations

    The calculus of variations began with the work of Isaac Newton, such as with Newton's minimal resistance problem, which he formulated and solved in 1685, and published in his Principia in 1687, [2] which was the first problem in the field to be clearly formulated and correctly solved, and was one of the most difficult problems tackled by variational methods prior to the twentieth century.

  9. Second fundamental form - Wikipedia

    en.wikipedia.org/wiki/Second_fundamental_form

    The second fundamental form of a parametric surface S in R 3 was introduced and studied by Gauss. First suppose that the surface is the graph of a twice continuously differentiable function, z = f(x,y), and that the plane z = 0 is tangent to the surface at the origin. Then f and its partial derivatives with respect to x and y vanish at (0,0).