When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Orbital pole - Wikipedia

    en.wikipedia.org/wiki/Orbital_pole

    The north orbital poles of the Solar System major planets all lie within Draco. [1] The central yellow dot represents the Sun's rotation axis north pole. [citation needed] Jupiter's north orbital pole is colored orange, Mercury's pale blue, Venus's green, Earth's blue, Mars's red, Saturn's magenta, Uranus's grey, and Neptune's lavender.

  3. Poles of astronomical bodies - Wikipedia

    en.wikipedia.org/wiki/Poles_of_astronomical_bodies

    The poles of astronomical bodies are determined based on their axis of rotation in relation to the celestial poles of the celestial sphere. Astronomical bodies include stars, planets, dwarf planets and small Solar System bodies such as comets and minor planets (e.g., asteroids), as well as natural satellites and minor-planet moons.

  4. Solar coordinate systems - Wikipedia

    en.wikipedia.org/wiki/Solar_coordinate_systems

    The Sun is a rotating sphere of plasma at the center of the Solar System. It lacks a solid or liquid surface, so the interface separating its interior and its exterior is usually defined as the boundary where plasma becomes opaque to visible light, the photosphere. Since plasma is gaseous in nature, this surface has no permanent demarcated ...

  5. Position of the Sun - Wikipedia

    en.wikipedia.org/wiki/Position_of_the_Sun

    The position of the Sun in the sky is a function of both the time and the geographic location of observation on Earth's surface. As Earth orbits the Sun over the course of a year, the Sun appears to move with respect to the fixed stars on the celestial sphere, along a circular path called the ecliptic.

  6. Astronomical coordinate systems - Wikipedia

    en.wikipedia.org/wiki/Astronomical_coordinate...

    The heliocentric ecliptic system describes the planets' orbital movement around the Sun, and centers on the barycenter of the Solar System (i.e. very close to the center of the Sun). The system is primarily used for computing the positions of planets and other Solar System bodies, as well as defining their orbital elements.

  7. Ecliptic - Wikipedia

    en.wikipedia.org/wiki/Ecliptic

    The ecliptic is the apparent path of the Sun throughout the course of a year. [5] Because Earth takes one year to orbit the Sun, the apparent position of the Sun takes one year to make a complete circuit of the ecliptic. With slightly more than 365 days in one year, the Sun moves a little less than 1° eastward [6] every day.

  8. Orbital inclination - Wikipedia

    en.wikipedia.org/wiki/Orbital_inclination

    For planets and other rotating celestial bodies, the angle of the equatorial plane relative to the orbital plane – such as the tilt of the Earth's poles toward or away from the Sun – is sometimes also called inclination, but less ambiguous terms are axial tilt or obliquity.

  9. Sun - Wikipedia

    en.wikipedia.org/wiki/Sun

    The Sun is 1.4 million kilometers (4.643 light-seconds) wide, about 109 times wider than Earth, or four times the Lunar distance, and contains 99.86% of all Solar System mass. The Sun is a G-type main-sequence star that makes up about 99.86% of the mass of the Solar System. [26]