When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Triple junction - Wikipedia

    en.wikipedia.org/wiki/Triple_junction

    At the triple junction each of the three boundaries will be one of three types – a ridge (R), trench (T) or transform fault (F) – and triple junctions can be described according to the types of plate margin that meet at them (e.g. fault–fault–trench, ridge–ridge–ridge, or abbreviated F-F-T, R-R-R).

  3. 3-manifold - Wikipedia

    en.wikipedia.org/wiki/3-manifold

    A 3-torus in this sense is an example of a 3-dimensional compact manifold. It is also an example of a compact abelian Lie group. This follows from the fact that the unit circle is a compact abelian Lie group (when identified with the unit complex numbers with multiplication). Group multiplication on the torus is then defined by coordinate-wise ...

  4. Riemannian submersion - Wikipedia

    en.wikipedia.org/wiki/Riemannian_submersion

    An example of a Riemannian submersion arises when a Lie group acts isometrically, freely and properly on a Riemannian manifold (,). The projection π : M → N {\displaystyle \pi :M\rightarrow N} to the quotient space N = M / G {\displaystyle N=M/G} equipped with the quotient metric is a Riemannian submersion.

  5. Category:Unsolved problems in geometry - Wikipedia

    en.wikipedia.org/wiki/Category:Unsolved_problems...

    Pages in category "Unsolved problems in geometry" The following 48 pages are in this category, out of 48 total. This list may not reflect recent changes. A.

  6. Banach–Tarski paradox - Wikipedia

    en.wikipedia.org/wiki/Banach–Tarski_paradox

    "Can a ball be decomposed into a finite number of point sets and reassembled into two balls identical to the original?" The Banach–Tarski paradox is a theorem in set-theoretic geometry, which states the following: Given a solid ball in three-dimensional space, there exists a decomposition of the ball into a finite number of disjoint subsets, which can then be put back together in a different ...

  7. Bellman's lost-in-a-forest problem - Wikipedia

    en.wikipedia.org/wiki/Bellman's_lost-in-a-forest...

    Bellman's lost-in-a-forest problem is an unsolved minimization problem in geometry, originating in 1955 by the American applied mathematician Richard E. Bellman. [1] The problem is often stated as follows: "A hiker is lost in a forest whose shape and dimensions are precisely known to him.

  8. Dissection problem - Wikipedia

    en.wikipedia.org/wiki/Dissection_problem

    In geometry, a dissection problem is the problem of partitioning a geometric figure (such as a polytope or ball) into smaller pieces that may be rearranged into a new figure of equal content. In this context, the partitioning is called simply a dissection (of one polytope into another).

  9. Langley's Adventitious Angles - Wikipedia

    en.wikipedia.org/wiki/Langley's_Adventitious_Angles

    The article contains a history of the problem and a picture featuring the regular triacontagon and its diagonals. In 2015, an anonymous Japanese woman using the pen name "aerile re" published the first known method (the method of 3 circumcenters) to construct a proof in elementary geometry for a special class of adventitious quadrangles problem.