Search results
Results From The WOW.Com Content Network
In classical mechanics, areal velocity (also called sector velocity or sectorial velocity) is a pseudovector whose length equals the rate of change at which area is swept out by a particle as it moves along a curve. It has SI units of square meters per second (m 2 /s) and dimension of square length per time L 2 T −1.
The area required to calculate the volumetric flow rate is real or imaginary, flat or curved, either as a cross-sectional area or a surface. The vector area is a combination of the magnitude of the area through which the volume passes through, A , and a unit vector normal to the area, n ^ {\displaystyle {\hat {\mathbf {n} }}} .
The finite volume method (FVM) is a method for representing and evaluating partial differential equations in the form of algebraic equations. [1] In the finite volume method, volume integrals in a partial differential equation that contain a divergence term are converted to surface integrals, using the divergence theorem. These terms are then ...
The volume rate of flow of liquid through a source or sink (with the flow through a sink given a negative sign) is equal to the divergence of the velocity field at the pipe mouth, so adding up (integrating) the divergence of the liquid throughout the volume enclosed by S equals the volume rate of flux through S. This is the divergence theorem.
In fluid dynamics, the volumetric flux is the rate of volume flow across a unit area (m 3 ·s −1 ·m −2), and has dimensions of distance/time (volume/(time*area)) - equivalent to mean velocity. The density of a particular property in a fluid's volume, multiplied with the volumetric flux of the fluid, thus defines the advective flux of that ...
Since the speed v is likewise unchanging, the areal velocity 1 ⁄ 2 vr ⊥ is a constant of motion; the particle sweeps out equal areas in equal times. The area A of a circular sector equals 1 ⁄ 2 r 2 φ = 1 ⁄ 2 r 2 ωt = 1 ⁄ 2 r v φ t. Hence, the areal velocity dA/dt equals 1 ⁄ 2 r v φ = 1 ⁄ 2 h.
If correctly selected, it reaches terminal velocity, which can be measured by the time it takes to pass two marks on the tube. Electronic sensing can be used for opaque fluids. Knowing the terminal velocity, the size and density of the sphere, and the density of the liquid, Stokes' law can be used to calculate the viscosity of the fluid. A ...
Newton illustrates his formula with three examples. In the first two, the central force is a power law, F(r) = r n−3, so C(r) is proportional to r n. The formula above indicates that the angular motion is multiplied by a factor k = 1/ √ n, so that the apsidal angle α equals 180°/ √ n.