When.com Web Search

  1. Ad

    related to: half life calculation examples in physics

Search results

  1. Results From The WOW.Com Content Network
  2. Half-life - Wikipedia

    en.wikipedia.org/wiki/Half-life

    Instead, the half-life is defined in terms of probability: "Half-life is the time required for exactly half of the entities to decay on average". In other words, the probability of a radioactive atom decaying within its half-life is 50%. [2] For example, the accompanying image is a simulation of many identical atoms undergoing radioactive decay.

  3. Exponential decay - Wikipedia

    en.wikipedia.org/wiki/Exponential_decay

    A more intuitive characteristic of exponential decay for many people is the time required for the decaying quantity to fall to one half of its initial value. (If N(t) is discrete, then this is the median life-time rather than the mean life-time.) This time is called the half-life, and often denoted by the symbol t 1/2. The half-life can be ...

  4. List of radioactive nuclides by half-life - Wikipedia

    en.wikipedia.org/wiki/List_of_radioactive...

    Radioactive isotope table "lists ALL radioactive nuclei with a half-life greater than 1000 years", incorporated in the list above. The NUBASE2020 evaluation of nuclear physics properties F.G. Kondev et al. 2021 Chinese Phys. C 45 030001. The PDF of this article lists the half-lives of all known radioactives nuclides.

  5. Alpha decay - Wikipedia

    en.wikipedia.org/wiki/Alpha_decay

    As an extreme example, the half-life of the isotope bismuth-209 is 2.01 × 10 19 years. The isotopes in beta-decay stable isobars that are also stable with regards to double beta decay with mass number A = 5, A = 8, 143 ≤ A ≤ 155, 160 ≤ A ≤ 162, and A ≥ 165 are theorized to undergo alpha decay.

  6. Decay scheme - Wikipedia

    en.wikipedia.org/wiki/Decay_scheme

    The decay scheme of a radioactive substance is a graphical presentation of all the transitions occurring in a decay, and of their relationships. Examples are shown below. It is useful to think of the decay scheme as placed in a coordinate system, where the vertical axis is energy, increasing from bottom to top, and the horizontal axis is the proton number, increasing from left to right.

  7. Free neutron decay - Wikipedia

    en.wikipedia.org/wiki/Free_neutron_decay

    Therefore, the half-life for this process (which differs from the mean lifetime by a factor of ln(2) ≈ 0.693) is 611 ± 1 s (about 10 min, 11 s). [3] [4] The beta decay of the neutron described in this article can be notated at four slightly different levels of detail, as shown in four layers of Feynman diagrams in a section below. n 0 → p ...

  8. Branching fraction - Wikipedia

    en.wikipedia.org/wiki/Branching_fraction

    For example, for decays of 132 Cs, 98.13% are ε (electron capture) or β + decays, and 1.87% are β − decays. The half-life of this isotope is 6.480 days, [2] which corresponds to a total decay constant of 0.1070 d −1. Then the partial decay constants, as computed from the branching fractions, are 0.1050 d −1 for ε/β + decays, and 2.14 ...

  9. Proton decay - Wikipedia

    en.wikipedia.org/wiki/Proton_decay

    Currently, the most precise results come from the Super-Kamiokande water Cherenkov radiation detector in Japan: [13] a lower bound on the proton's half-life of 2.4 × 10 34 years via positron decay, and similarly, 1.6 × 10 34 years via antimuon decay, close to a supersymmetry (SUSY) prediction of 10 34 –10 36 years. [14]