Search results
Results From The WOW.Com Content Network
Bernoulli's principle is a key concept in fluid dynamics that relates pressure, density, speed and height. Bernoulli's principle states that an increase in the speed of a parcel of fluid occurs simultaneously with a decrease in either the pressure or the height above a datum. [1]:
In mathematics, an ordinary differential equation is called a Bernoulli differential equation if it is of the form ′ + = (), where is a real number. Some authors allow any real , [1] [2] whereas others require that not be 0 or 1.
Bernoulli made a clear distinction between expected value and expected utility. Instead of using the weighted outcomes, he used the weighted utility multiplied by probabilities. He proved that the utility function used in real life is finite, even when its expected value is infinite. [3]
The categorical distribution is the generalization of the Bernoulli distribution for variables with any constant number of discrete values. The Beta distribution is the conjugate prior of the Bernoulli distribution. [5] The geometric distribution models the number of independent and identical Bernoulli trials needed to get one success.
The Birnbaum–Saunders distribution, also known as the fatigue life distribution, is a probability distribution used extensively in reliability applications to model failure times. The chi distribution. The noncentral chi distribution; The chi-squared distribution, which is the sum of the squares of n independent Gaussian random variables.
The velocity of the surface can by related to the outflow velocity by the continuity equation =, where is the orifice's cross section and is the (cylindrical) vessel's cross section. Renaming v 2 {\displaystyle v_{2}} to v A {\displaystyle v_{A}} (A like Aperture) gives:
The Bernoulli equation applicable to incompressible flow shows that the stagnation pressure is equal to the dynamic pressure and static pressure combined. [1]: § 3.5 In compressible flows, stagnation pressure is also equal to total pressure as well, provided that the fluid entering the stagnation point is brought to rest isentropically.
A common misconception is that the Coandă effect is demonstrated when a stream of tap water flows over the back of a spoon held lightly in the stream and the spoon is pulled into the stream (for example, Massey 1979, Fig 3.12 uses the Coandă effect to explain the deflection of water around a cylinder). While the flow looks very similar to the ...