When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Vector fields in cylindrical and spherical coordinates

    en.wikipedia.org/wiki/Vector_fields_in...

    Vectors are defined in cylindrical coordinates by (ρ, φ, z), where ρ is the length of the vector projected onto the xy-plane, φ is the angle between the projection of the vector onto the xy-plane (i.e. ρ) and the positive x-axis (0 ≤ φ < 2π), z is the regular z-coordinate. (ρ, φ, z) is given in Cartesian coordinates by:

  3. Intersection (geometry) - Wikipedia

    en.wikipedia.org/wiki/Intersection_(geometry)

    In general the intersection points can be determined by solving the equation by a Newton iteration. If a) both conics are given implicitly (by an equation) a 2-dimensional Newton iteration b) one implicitly and the other parametrically given a 1-dimensional Newton iteration is necessary. See next section.

  4. Line–sphere intersection - Wikipedia

    en.wikipedia.org/wiki/Line–sphere_intersection

    Intersection in two points. Methods for distinguishing these cases, and determining the coordinates for the points in the latter cases, are useful in a number of circumstances. For example, it is a common calculation to perform during ray tracing .

  5. Minkowski addition - Wikipedia

    en.wikipedia.org/wiki/Minkowski_addition

    An alternative definition of the Minkowski difference is sometimes used for computing intersection of convex shapes. [3] This is not equivalent to the previous definition, and is not an inverse of the sum operation. Instead it replaces the vector addition of the Minkowski sum with a vector subtraction. If the two convex shapes intersect, the ...

  6. Line–line intersection - Wikipedia

    en.wikipedia.org/wiki/Line–line_intersection

    Assume that we want to find intersection of two infinite lines in 2-dimensional space, defined as a 1 x + b 1 y + c 1 = 0 and a 2 x + b 2 y + c 2 = 0. We can represent these two lines in line coordinates as U 1 = (a 1, b 1, c 1) and U 2 = (a 2, b 2, c 2). The intersection P′ of two lines is then simply given by [4]

  7. Projective plane - Wikipedia

    en.wikipedia.org/wiki/Projective_plane

    The real (or complex) projective plane and the projective plane of order 3 given above are examples of Desarguesian projective planes. The projective planes that can not be constructed in this manner are called non-Desarguesian planes, and the Moulton plane given above is an example of one.

  8. Intersection curve - Wikipedia

    en.wikipedia.org/wiki/Intersection_curve

    The analytic determination of the intersection curve of two surfaces is easy only in simple cases; for example: a) the intersection of two planes, b) plane section of a quadric (sphere, cylinder, cone, etc.), c) intersection of two quadrics in special cases. For the general case, literature provides algorithms, in order to calculate points of ...

  9. Archimedean spiral - Wikipedia

    en.wikipedia.org/wiki/Archimedean_spiral

    In contrast to this, in a logarithmic spiral these distances, as well as the distances of the intersection points measured from the origin, form a geometric progression. The Archimedean spiral has two arms, one for θ > 0 and one for θ < 0. The two arms are smoothly connected at the origin. Only one arm is shown on the accompanying graph.