Ad
related to: proof by mathematical induction questions in discrete mathematicsstudy.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
Mathematical induction is an inference rule used in formal proofs, and is the foundation of most correctness proofs for computer programs. [ 3 ] Despite its name, mathematical induction differs fundamentally from inductive reasoning as used in philosophy , in which the examination of many cases results in a probable conclusion.
In proof by mathematical induction, a single "base case" is proved, and an "induction rule" is proved that establishes that any arbitrary case implies the next case. Since in principle the induction rule can be applied repeatedly (starting from the proved base case), it follows that all (usually infinitely many) cases are provable. [ 15 ]
In mathematics and logic, a direct proof is a way of showing the truth or falsehood of a given statement by a straightforward combination of established facts, usually axioms, existing lemmas and theorems, without making any further assumptions. [1]
Proof by exhaustion, also known as proof by cases, proof by case analysis, complete induction or the brute force method, is a method of mathematical proof in which the statement to be proved is split into a finite number of cases or sets of equivalent cases, and where each type of case is checked to see if the proposition in question holds. [1]
Cantor's diagonal argument (among various similar names [note 1]) is a mathematical proof that there are infinite sets which cannot be put into one-to-one correspondence with the infinite set of natural numbers – informally, that there are sets which in some sense contain more elements than there are positive integers.
We prove associativity by first fixing natural numbers a and b and applying induction on the natural number c. For the base case c = 0, (a + b) + 0 = a + b = a + (b + 0) Each equation follows by definition [A1]; the first with a + b, the second with b. Now, for the induction. We assume the induction hypothesis, namely we assume that for some ...
These examples, one from mathematics and one from natural language, illustrate the concept of vacuous truths: "For any integer x, if x > 5 then x > 3." [11] – This statement is true non-vacuously (since some integers are indeed greater than 5), but some of its implications are only vacuously true: for example, when x is the integer 2, the statement implies the vacuous truth that "if 2 > 5 ...
For instance, proofs by mathematical induction have two parts: the "base case" which shows that the theorem is true for a particular initial value (such as n = 0 or n = 1), and the inductive step which shows that if the theorem is true for a certain value of n, then it is also true for the value n + 1. The base case is often trivial and is ...
Ad
related to: proof by mathematical induction questions in discrete mathematicsstudy.com has been visited by 100K+ users in the past month