When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Gaussian quadrature - Wikipedia

    en.wikipedia.org/wiki/Gaussian_quadrature

    This exact rule is known as the Gauss–Legendre quadrature rule. The quadrature rule will only be an accurate approximation to the integral above if f (x) is well-approximated by a polynomial of degree 2n − 1 or less on [−1, 1]. The Gauss–Legendre quadrature rule is not typically used for integrable functions with endpoint singularities ...

  3. Newton–Cotes formulas - Wikipedia

    en.wikipedia.org/wiki/Newton–Cotes_formulas

    It is assumed that the value of a function f defined on [,] is known at + equally spaced points: < < <.There are two classes of Newton–Cotes quadrature: they are called "closed" when = and =, i.e. they use the function values at the interval endpoints, and "open" when > and <, i.e. they do not use the function values at the endpoints.

  4. Numerical integration - Wikipedia

    en.wikipedia.org/wiki/Numerical_integration

    A Gaussian quadrature rule is typically more accurate than a Newton–Cotes rule that uses the same number of function evaluations, if the integrand is smooth (i.e., if it is sufficiently differentiable). Other quadrature methods with varying intervals include Clenshaw–Curtis quadrature (also called Fejér quadrature) methods, which do nest.

  5. Gauss–Legendre quadrature - Wikipedia

    en.wikipedia.org/wiki/Gauss–Legendre_quadrature

    Carl Friedrich Gauss was the first to derive the Gauss–Legendre quadrature rule, doing so by a calculation with continued fractions in 1814. [4] He calculated the nodes and weights to 16 digits up to order n=7 by hand. Carl Gustav Jacob Jacobi discovered the connection between the quadrature rule and the orthogonal family of Legendre polynomials.

  6. Gauss–Kronrod quadrature formula - Wikipedia

    en.wikipedia.org/wiki/Gauss–Kronrod_quadrature...

    Gauss–Kronrod formulas are extensions of the Gauss quadrature formulas generated by adding + points to an -point rule in such a way that the resulting rule is exact for polynomials of degree less than or equal to + (Laurie (1997, p. 1133); the corresponding Gauss rule is of order ).

  7. Gauss–Laguerre quadrature - Wikipedia

    en.wikipedia.org/wiki/Gauss–Laguerre_quadrature

    Generalized Gauss–Laguerre quadrature [ edit ] More generally, one can also consider integrands that have a known x α {\displaystyle x^{\alpha }} power-law singularity at x =0, for some real number α > − 1 {\displaystyle \alpha >-1} , leading to integrals of the form:

  8. Simpson's rule - Wikipedia

    en.wikipedia.org/wiki/Simpson's_rule

    The coefficients within the major part of the region being integrated are one with non-unit coefficients only at the edges. These two rules can be associated with Euler–MacLaurin formula with the first derivative term and named First order Euler–MacLaurin integration rules. [7]

  9. List of numerical analysis topics - Wikipedia

    en.wikipedia.org/wiki/List_of_numerical_analysis...

    Gauss–Laguerre quadrature — extension of Gaussian quadrature for integrals with weight exp(−x) on [0, ∞] Gauss–Kronrod quadrature formula — nested rule based on Gaussian quadrature; Gauss–Kronrod rules; Tanh-sinh quadrature — variant of Gaussian quadrature which works well with singularities at the end points