Search results
Results From The WOW.Com Content Network
A spectral line is a weaker or stronger region in an otherwise uniform and continuous spectrum. It may result from emission or absorption of light in a narrow frequency range, compared with the nearby frequencies. Spectral lines are often used to identify atoms and molecules.
Spectral line shape or spectral line profile describes the form of an electromagnetic spectrum in the vicinity of a spectral line – a region of stronger or weaker intensity in the spectrum. Ideal line shapes include Lorentzian, Gaussian and Voigt functions, whose parameters are the line position, maximum height and half-width. [1] Actual line ...
The classical example of a discrete spectrum (for which the term was first used) is the characteristic set of discrete spectral lines seen in the emission spectrum and absorption spectrum of isolated atoms of a chemical element, which only absorb and emit light at particular wavelengths. The technique of spectroscopy is based on this phenomenon.
Characteristic X-rays are emitted when outer-shell electrons fill a vacancy in the inner shell of an atom, releasing X-rays in a pattern that is "characteristic" to each element. Characteristic X-rays were discovered by Charles Glover Barkla in 1909, [ 1 ] who later won the Nobel Prize in Physics for his discovery in 1917.
The characteristic X-rays come out at specific angles, and since the angular position for every X-ray spectral line is known and recorded, it is easy to find the sample's composition. A chart for a scan of a Molybdenum specimen is shown in Fig. 2. The tall peak on the left side is the characteristic alpha line at a two theta of 12 degrees.
The red H-alpha spectral line of the Balmer series of atomic hydrogen, which is the transition from the shell n = 3 to the shell n = 2, is one of the conspicuous colours of the universe. It contributes a bright red line to the spectra of emission or ionisation nebula, like the Orion Nebula , which are often H II regions found in star forming ...
The Siegbahn notation is used in X-ray spectroscopy to name the spectral lines that are characteristic to elements. It was introduced by Manne Siegbahn.. The characteristic lines in X-ray emission spectra correspond to atomic electronic transitions where an electron jumps down to a vacancy in one of the inner shells of an atom.
The spectral lines are grouped into series according to n′. Lines are named sequentially starting from the longest wavelength/lowest frequency of the series, using Greek letters within each series. For example, the 2 → 1 line is called "Lyman-alpha" (Ly-α), while the 7 → 3 line is called "Paschen-delta" (Pa-δ).